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Abstract 

We consider the motion estimation problem in the case of 
very closely spaced views. We revisit the differential epipo
lar equation providing an interpretation of it. On the ba
sis of this interpretation we introduce a cost function to 
estimate the parameters of the differential epipolar equa
tion, which enables us to compute the camera extrinsics and 
some intrinsics. In the synthetic tests performed we com
pare this continuous method with traditional discrete mo
tion estimation and contrary to previous findings [6J cannot 
perceive any computational advantage for ·the continuous 
method. 

1. Introduction 

Consider a camera with unknown (and possibly varying) 
intrinsic parameters moving in a static scene. At any time 
instant, the projection of the scene onto the image plane 
generates an optical flow field. Each flow vector of this field 
has a position component m == [u, V, IlT and a velocity 
component m = [it, V, OlT, where u and v are the coor
dinates of the projection of a world point onto the image 
plane, and (u, v) is the instantaneous velocity vector. 

The differential epipolar equation [2, 5] 

mTVm+mTCm=O (1) 

with C symmetric and V anti-symmetric, is the first order 
relation between the optical flow field and the camera mo

tion and intrinsic parameters. 
In this paper we estimate the camera motion parame

ters using the differential epipolar equation by minimising 
a meaningful geometric error function. We then compare 
this to the motion estimates obtained from the more com
mon discrete epipolar equation. Sadly - and contrary to the 
findings reported in [6] - we find no clear evidence that any 
performance benefits result. 

We begin by reviewing the differential epipolar equation 
in §2, discuss our implementation of the motion estimation 
problem in §3, and in §4 show experimental results, com-
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paring these to the current state-of-the-art in discrete motion 
estimation. We draw conclusions in §5. 

2. The differential epipolar equation 

In our present work, we are considering the case of very 
closely spaced views. As indicated in the previous section, 
the geometry of this case is governed by the differential 
epipolar constraint (1) relating image points and their in
stantaneous image velocities, which was introduced in [5]. 
In [1], this was extended to a general set of differential con
straints (relating image points and their instantaneous ve
locities, accelerations, etc) analogous to the multiview con
staints described in [7, 4]. 

The two view constraint in that work comes from a 
first order taylor expansion of the projection equation 
.\(t)m(t) = P(t)X = [Q(t) I T(t)] X, viz: 

(.\ +)..t + O(t2))(m + mt + O(e)) 
([Q I T] + [Q I Tlt + O(t2))X (2) 

If we choose a coordinate frame (as we are free to do) which 
aligns the world frame with the camera, and rewrite the 
equation in matrix form we obtain: 

(3) 

The 6x6 matrix on the left has a non-zero null space, hence 
its determinant is zero. Laplacian determinant expansion 
then yields the equation 

which is exactly (1) but restated in tensor notation with T 
and Q represented respectively as ij and tilk. 

Although this derivation is very clean and direct, it hides 
some interesting structure which we would like to explore 
further, and so we provide a derivation which is more in the 
spirit of [5, 6J as follows. 



The world point X projects to the two image points as 

KdIIO]X 
KdRltlX 

(5) 

(6) 

where the rotation matrix R and the translation vector t = 

(tx; ty, tz)T represent camera motion, K1, K2 camera in

trinsics and Z1, Z2 relative depths caused by motion. 

Combining (5) and (6) we get 

(7) 

from which the derivation of the familiar uncalibrated 

epipolar equation is relatively straighforward. 

Our goal here is to study this relation in the continuous 

case. That is, we will assume that t2 = tJ + dt and com

pute the limit of (7) when dt � O. We will consider small 

variations of: 

• Intrinsics K;-l = Kll + K-1dt + o(dt2). 
• Image plane motion: 1112 = m1 + m dt + o(dt2). 
• Camera rotation: R = I + 0 dt + o(dt

2
). 

• Camera translation: t = v dt + o( dt2). 
• Depth: Z2 = Z1 + i: dt + o(dt2). 

Introducing the previous equations into (7) and taking 

the limit when dt � 0 we obtain the explicit formula for m 
when the camera is translating and rotating simultaneously 

(8) 

where e3e is the focus of expansion (or instantaneous 

epipole) of the image, T is the time to contact 21 and Roo 
is the derivative of the homography for the plane at infinity. 
Rewriting (8) we get 

(9) 

where 8 T = (0,0,1). mv is the component of optical flow 
caused by camera translation and mn is the component 

caused by camera rotation and intrinsics variation. Here 

we can observe that the instantaneous motion of an image 

point (optical flow) caused by camera rotation and transla

tion with varying intrinsics is the composition of two flows: 

a rotation/intrinsic flow. mo, whose value can be com

puted, provided the derivative of the infinite homography 

is known, and a translational flow, mv, whose value can 

only be computed up to a scale factor, because it depends 

on (e3), the translational component along the optical axis. 
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Taking the dot product of (8) with milK1vlx we get 
the differential epipolar equation 

m! [K1vlx rh+ 
-----.-.. 
V=[elx 

m! JK1vlx [-K1K-1 + K10Kll)ml = 0.(10) 

C=[elxH� 

From (10) it follows that V is an anti symmetric ma

trix encoding the projective coordinates of the instantaneous 

epipole (FOE), the estimated C is the symmetric part of 
[el x Roo, and consequently that the constraint e T Ce = 0 

must hold. 

We will use equation (10) to self calibrate a moving cam
era with varying focal length. This problem was previously 

addressed in [8] for a moving camera with fixed and un

known intrinsics using normal flow measurements. 

3. Estimation of the differential epipolar equa
tion parameters 

In this section we will present a procedure to estimate 

the parameters of the epipolar equation. It is based on the 

assumption that our optical flow estimation algorithm pro

vides exact values for m and approximated (or noisy) values 
for m. 

First we will introduce a cost function that measures the 

extent to which optical flow data satisfy (1) for a given set 

of parameters C, V. Then, we '11 introduce the constraint on 

the estimated parameters and resort to an iterative minimi

sation procedure to compute the optimal values for C and 
V. 

Let C1,C2,C3,C4,C5,C6 be the components of Sym(C) 
and e T = (el' e2, e3)' Substituting these values for V and 

C into (1) and factoring the noisy terms it, V, we get 

it�) + v(�)+ 
p q 

(11) 

C1 u2 + 2C2UV + 2C3U + C4V2 + 2C5V + C6 = O. , , 
r 

The line A;(iti,Vi) == piti + qVi + r 0 represents the 

instantaneous epipolar line for the point (u;, Vi) . From (9) 
it is easy to see that it is parallel to the line joining m and e 
(me), its position depending on the value of Roo. When the 

motion is only translational and intrinsics are fixed (Hoo = 

0) it coincides with me (see Fig 1). 

Note that normal components of optical flow do not give 

us any direct constraints on the epipolar geometry. Hence, 

in the absence of other constraints (such as scene planarity), 

we are limited to using those flow vectors obtained from 
regions with low autocorrelation in all spatial directions -
i.e. at 'comers'. 
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Figure 1. Interpretation of A;. 

Our goal is to find the parameters of V and C that min
imise d(Wi, Ai), the geometric distance ofm; to its instan
taneous epipolar line Ai. The cost function used, J, is the 

sum of the squared distances of each point: 

where 0 = ml, WI, . . . ,mN, mN is the optical flow data 

and f} = (el' 1'02, 1'03, CI, C2, C3, C4, C5, Co) T is the parameter 
vector. 

The uncertainty of each velocity measurement (u, v) can 
be described by a 2 x 2 covariance matrix, l:m. We then 
adopt the following cost function, which takes into account 

this information 

where 

fi = (V,;,-Ui,ViUi -u.;vi,U;,2uiVi.,2u;,v;,2vi,1)T 

and 

HT = ( 1 
, 0 

o 
-1 

(13) 

-Vi ) 
. Ui 

We then require the minimum of J subject to the con
straint e T Ce = O. In our solution we substitute one of 
the f} parameters in (12) for the explicit value obtained from 
the constraint and employ a general (unconstrained) itera
tive minimisation procedure. For example, 

CICr + 2c2ele2 + c4e� 
e� 

(14) 

By substituting C6 in (12) by (14) we get a new cost function 
Jc that implictly imposes the algebraic constraint 

N T T 
J (0 6) '" 6 gigi 6 

(15) c , - � TH."" . HT , 
i=l e zL.omi 2 e 
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gJ = 

Once the epipolar equation's parameters are estimated, 
computing the FOE is straightforward from (10). The ro
tational velocity of the camera, n, and the focal length can 

also be computed given partial knowledge of the camera 
calibration parameters [2]. 

4. Experimental results 

The experimental results reported here are synthetic tests 
performed with data obtained from a simulated camera with 
realistic parameters . In each of the tests performed a cloud 

of 400 points is randomly generated in a cube of 5 meters 
of depth located at a distance of 2.5 meters and centered 
in front of the camera. Each point is projected onto the 
image plane and associated to each point we compute an 
instantaneous flow vector, which is the projection onto the 

image of the instantaneous velocity of the point relative to 

the camera. Horizontal and vertical components of the flow 
vector are contaminated with randomly distributed gaussian 
noise. Each of the following test is repeated 20 times and 
the data reported are the average of the computed results. 

Our main goal in this paper is to compare the precision 
in the estimation of the FOE of the continuous model pre
sented here with traditional discrete methods. Here the fun
damental matrix is determined using non-linear estimation 
which enforces the rank-2 constraint, and the epipole as the 
right null space of F. In the first test (see Fig.2) we keep 
the camera parameters fixed and increase the contaminating 
noise. In the second test (see Fig.3) noise remains fixed with 
varying rotational and translational disparity. In both plots 

continuous model results are represented with solid line and 
the discrete ones with dashed line. 

Contrary to the experimental results reported in [6], we 
do not perceive in the synthetic tests a clear advantage of 
one method over the other. 

5. Conclusions 

We have derived the continuous analogue of the discrete 
epipolar equation, given a geometric interpretation of it, and 
a practical algorithm for computing a camera's motion pa
rameters from closely spaced views. 

The results, when compared with the current state-of
the-art in discrete epipolar geometry, fare no better, and in 
some cases worse, than the discrete version. Triggs [31 has 
reported (although not demonstrated) a similar conclusion. 

The theoretical studies in [5, 2, 1, 3] are of some value 
in furthering our understanding of geometric constraints. 
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Figure 2. FOE estimation noise varying. 
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Figure 3. FOE estimation disparity varying. 

Triggs forwards two potential practical advantages of the 
differential approach: (i) the correspondence problem is 
easier; (ii) the problem may be less non-linear. Unfortu
nately, as our results show, the former would not seem to be 
an advantage given that discrete approaches appear to per
form as well as continuous, even for closely spaced views, 
and - at any rate in our formulation - the latter is not be
cause of the need to impose the algebraic constraint. 

It may be possible to improve the results somewhat 
by considering long sequences, however in these circum
stances one would expect discrete methods to improve fur
ther since usually a longer sequence will correspond to a 
larger viewing baseline. Although our results are not totally 
conclusive, they do seem to suggest that there is doubt as 
to whether or not further practical investigation will yield 
practical advantages of the continuous method. 

A second possibility is to investigate the continuous ana
logue of the tri-focal tensor. [1] did this in implicit form 
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and we have performed a determinant expansion of their 
constraint to obtain four tensors which encode the relative 
geometry of points and their image velocities and accelera
tions. Two practical problems arise on further investigation. 
The first is the unweildy number of constraints which exist 
between the tensor elements (and how best to enforce them), 
and the second is the perrenial one of how best to obtain ac
curate derivatives (especially higher order ones) from noisy 
image data. 
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