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Abstract. Enabling autonomous mobile manipulators to collaborate
with people is a challenging research field with a wide range of appli-
cations. Collaboration means working with a partner to reach a common
goal and it involves performing both, individual and joint actions, with
her. Human-robot collaboration requires, at least, two conditions to be
efficient: a) a common plan, usually under-defined, for all involved part-
ners; and b) for each partner, the capability to infer the intentions of the
other in order to coordinate the common behavior. This is a hard problem
for robotics since people can change their minds on their envisaged goal
or interrupt a task without delivering legible reasons. Also, collabora-
tive robots should select their actions taking into account human-aware
factors such as safety, reliability and comfort. Current robotic cogni-
tive systems are usually limited in this respect as they lack the rich dy-
namic representations and the flexible human-aware planning capabilities
needed to succeed in these collaboration tasks. In this paper, we address
this problem by proposing and discussing a deep hybrid representation,
DSR, which will be geometrically ordered at several layers of abstraction
(deep) and will merge symbolic and geometric information (hybrid). This
representation is part of a new agents-based robotics cognitive architec-
ture called CORTEX. The agents that form part of CORTEX are in
charge of high-level functionalities, reactive and deliberative, and share
this representation among them. They keep it synchronized with the real
world through sensor readings, and coherent with the internal domain
knowledge by validating each update.
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1 Introduction

While the economic benefits of robotics in industry are already clear, it is ex-
pected that their inclusion in everyday life will have a tremendous impact. The
EU’s H2010 initiative states that, as human assistants, tomorrow’s robots will
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have the capacity to resolve many of the future economic and social challenges
faced by European society, such as aging and well-being. However, to access these
new markets and to be competitive, robots have to be dependable, smarter and
able to work in closer collaboration with humans. In these scenarios, human-
robot interaction (HRI) is now envisioned more as a relationship among com-
panions than a mere master-slave relationship. It can be considered that the
complete design of a real co-robot is beyond the scope of what can be achieved
technically today. Still, to make progress along this path there are several im-
portant issues that are currently being discussed as a way to facilitate the design
of new cognitive robotic architectures that will, one day, show real human-robot
collaboration (HRC).

If a collaborative robot has to cooperate with a human partner as a work
companion, it should be endowed with the abilities to consider its environmen-
tal context and assess how external factors could affect its action, including the
role and activity of the human interaction partner in the joint activity. Efficient
collaboration not only implies a common plan for all involved partners, but also
the coordination of the behavior of each agent with those of the other ones, i.e.
to gain a joint intention. This coordination should be simultaneously addressed
at different levels of abstraction -e.g. semantic, situational or motor, and the
robot has to internalize a coherent representation about the motions, actions
and intentions -including abilities and preferences- of the rest of partners. Addi-
tionally, a major difficulty in HRC scenarios is that people can exhibit a rather
non-deterministic and unstable behavior, but they also tend to perceive current
robots as slow and unintelligent. These factors difficult HRC. To overcome them
the robot should continuously try to guess their partners’ goals and intentions,
trigger appropriate reactions and, ultimately, be socially proactive.

In this paper we will argue that to fully develop HRI, and to pave the way into
HRC, a cognitive robotics architecture should use a deep, central representation
shared among the agents composing it, which codes information at different
levels of abstraction. We will explore here this issue, unfolding the arguments
that support it and the design decisions taking during its development.

To our knowledge, the first works that proposed a graph as an internal rep-
resentation for a robotics architecture focused only in geometric data. ROS’
transform library, tf [1], BRICS Robot Scene Graph [2] and RoboCog’s Inner-
Model [3] all appeared in 2013 as a response to the need for an structured,
centralized representation of the robot and world kinematics. These construc-
tions are important advances towards better robotic architectures, a richer, and
deeper representation was needed to hold the complete set of beliefs of the robot.
The concept of deep representations was first described by Beetz et al. [31] as
representations that combine various levels of abstraction, ranging, for exam-
ple, from the continuous limb motions required to perform an activity to atomic
high-level actions, subactivities, and activities. This definition is however pro-
vided in a paper where the robot performs its activities alone. In a collaborative
scenario, we should also consider representation and inference mechanisms for
models including the persons bodies, actions, abilities and intentions.
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Separately, symbolic and metric representations have been proposed in many
different forms and uses. Symbolic knowledge representation have been at the
core of AI since its beginnings [4] [5] and cover all forms of relational formal-
izations such as production rules, frames, schemes, cases, semantic nets, first
order logic or situational calculus. At a high level of abstraction, the Robot
Learning Language (RoLL) [30] could be used for learning models about human
behaviour and reactions, joint plan performance or recognizing human activity.
Also, human models have been employed by the Human-Aware Task Planner
(HATP) [32]. A symbolic graph structure was proposed in [6] as part of our pre-
vious architecture RoboCog [7] and it will be described in later sections. Metric
and kinematic representations are commonly used as part of 3D simulators and
graphics engines [8] [38] [40].

However, the concept of deep representations implies an unified, hierarchical
organization of the knowledge that ranges from the symbolic layer to the motor
one, mapping abstract concepts to, or from, geometric environment models and
sensor data structures of the robot. The presence of a detailed representation of
the spatial state of the problem is also required in the work of S. Wintermute: ...
actions can be simulated (imagined) in terms of this concrete representation, and
the agent can derive abstract information by applying perceptual processes to the
resulting concrete state [33]. The use of a situational representation of the outer
world to endow the robot with the ability to understand physical consequences
of their actions can be extended, in a collaborative scenario, to support proactive
robot behaviors. This possibility has been addressed in the LAAS Architecture
for Autonomous Systems proposed by Ali et al. (2009).

The rest of the paper is organized as follows: Section 2 presents arguments
and examples that support the former claims. Section 3 presents an application
scenario where the world model is currently been tested. Conclusions and future
work are drawn at Section 4.

2 The Deep State Representation

CORTEX is an agent-based new cognitive robotics architecture designed as an
evolution of our former RoboCog architecture that provides the agents with a
shared, hybrid representation of the robot’s belief about itself and its environ-
ment. This graph-like structure is called DSR and can be accessed by all agents
during their operations. DSR is the only means for the agents to communicate
among them. Figure 1 shows a small DSR graph with multiple labeled edges
representing heterogeneous attributes.

The idea of a shared representation among agents has its roots in several
classical papers [9] [10] [11] that developed the concept of blackboard architecture.
Later, Hayes-Roth [12] extended this idea into a complete control architecture. In
the original blackboard systems, agents where conceived more as problem solvers,
heterogeneous experts that contribute to the overall problem in a hybrid planned-
opportunistic way. They communicate through a shared structure where goals,
sub goals and problems state were incrementally updated. In CORTEX, agents
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(a) A complete DSR graph (b) Zoom in showing predicates and
node names

Fig. 1. The DSR graph at different levels of resolution, showing metric and symbolic
properties.

solve not only deliberative tasks but also perceptual, motor and behavioral ones,
so their communication needs are somewhat different. Nevertheless, we gather
some ideas from these architectures [13] [14] and also others from graph theory
and distributed databases [43]. We present now some arguments supporting the
need of a graph representation if the robot’s inner beliefs.

The first reason to use a graph in CORTEX is because all internal information
defining the state of the robot and its beliefs about the environment can be stored
according to a generic structure. As generic data structures, graphs can hold any
relational knowledge composed of discrete elements and relations among them. In
this broad category falls almost all symbolic knowledge representation methods
including frames, schemes, production rules and cases, and also the geometric
knowledge that the robot has to maintain about itself and the environment. This
geometric knowledge includes instances of the types of objects recognizable in
the world like i.e. chairs, tables, cups or generic obstacles of undefined form.
Also human bodies and its parts like arms, heads, legs, etc. All these parts are
kinematically related through 3D transformations forming a scene-tree.

A second reason is that the graph can be made to evolve under some genera-
tive rules. Assuming that the type of nodes and edges are predefined, the graph
can evolve by inclusions or deletions of parts, causing structural changes. Also
it can evolve by changing the value of the attributes stored in nodes and edges.
The structural changes can be regulated by a generative grammar that defines
how the initial model can change. A typical example would be that of the robot
entering a new room and, after exploring it, it would add the a new node to the
graph. The grammar would impede the new node to be connected to something
else but the corresponding door, and, maybe, it would have to be oriented par-
allel to one of the walls of the proceeding room. So graphs give us the capacity
needed to store objects and their relationships and, combined with a grammar,
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a means to control its evolution to produce a growing model coherent with some
initial domain knowledge. Figure 2 shows how the graph changes when a person
enters the scene. In the left side only the robot and the rooms are represented.
In the right side, a person enters the room and the graph incorporates her as sub
graph, correctly related to the existing structure and with symbolic attributes
denoting what is known about her. Thus, the graph is not only a means of stor-
age but a way to articulate information coming from sensors and processed by
agents. Once in the graph, information can be accessed and interpreted by other
agents.

(a) Initial world model in DSR with the
robot and the room.

(b) A person enters the room and is in-
serted in the DSR when detected by the
Person agent.

(c) Graphic representation of the geo-
metric view.

(d) Graphic representation of the geo-
metric view when a person is inserted in
the DSR.

Fig. 2. Two states of the DSR graph, before a person enters the room (a,c), and after
she is detected and inserted in the DSR, (b,d).

A third reason to use a graph structure is the possibility of translating it into
a PDDL instance. There are certanin restrictions that depend on what is stored
in the graph and the PDDL version used, but it allows a direct use of start of
the art planning algorithms that otherwise would have required an important
effort. Further details on how this translation is done can be found in [6].

A forth reason to support the choice of graphs is the facility to visualize
its contents. Graph’s contents can be displayed in multiple ways using available
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3D technology and this is a crucial feature to debug the code of the agents,
specially when interacting among them. In CORTEX, visualization of the DSR
is done using the open source 3D scene-graph OpenSceneGraph, OSG [15] and a
class implementing the observer pattern that keeps DSR and OSG synchronized.
The DSR graph can be drawn in different ways. The geometric nodes and edges
are drawn as a normal 3D scene, using the meshes and 3D primitives that can
be stored as attributes in DSR. The symbolic relations can be drawn as an
independent graph or as a superimposed structure on its geometric counterpart.

An additional reason to use a graph is because it is possible to share it
efficiently among the agents using different techniques. The goal is to provide the
agents with a mechanism to modify the graph and propagate that modification
to all others. As long as this is achieved, all agents will have access to the global
represented state and will be able to use it as a broad context to select the best
possible action. There are several options that can be analyzed:

– A first option is to use an existing graph database server running as an agent
and use its API to modify and query the graph. The database should allow
for multi-graphs with a variable number of attributes in nodes and edges
and work with low latency and high throughput. Also, the model checking
functionality that filters candidate updates would have to be coded outside
the server. We have not made tests with currently available graph databases
like Neo4j[41] or Sparksee[42] but we expect to be a reasonable option if
some latency is allowed.

– A better solution in this line would be a database with a notification service,
so changes were automatically propagated to a set of clients. There is at a
least one open source database that we now of that provides this capabil-
ity, RethinkDB [43], but it is a document oriented database and conversion
between database types and agents language types will penalize the overall
process.

– A second option is to use a communications middleware -Ice in RoboComp-
that provides a publication-subscription service. Using a set of topics, all
agents would publish their changes and all would receive the updates. In
this distributed solution, the graph would not have a central store, but it
would exist as a set of local copies. This solution needs a synchronization
mechanism distributed in all the agents to guarantee the global coherence
of the graph, similar to the ones used in collaborative editing [16] or BASE
databases[17][18].

– A third option would be to let the agents push partial or global updates on
the graph to a known server agent. This agent would process the updates
to guarantee the global coherence of the graph and would publish the new
versions back to the agents. A similar solution was proposed in [19] for a dis-
tributed scene-graph to be used in shared virtual reality scenarios. Also, this
approach is similar to the one used in modern code repositories, such as Git.
Each agent works with a local copy of the graph while new updated versions
are arriving by subscription to the server. The local management of this flow
is responsibility of the local agent until it decides to push the changes up to
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the server. After that it receives a confirmation that the changes are valid or
a denying response with the error. This is the solution currently implemented
in CORTEX. Performance is more than enough for our current needs and
comparative tests will be done when the other implementations be available.

In the next section we present a brief formalization of DSR in its current
state.

2.1 DSR formalization

DSR is a multi-label directed graph which holds symbolic information as logic
attributes related by predicates. These are stored in nodes and edges respectively.
Also, DSR holds geometric information as predefined object types linked by 4x4
homogeneous matrices. Again, these are stored in nodes and edges respectively.
With DSR, the hand of the robot can be at a 3D pose and, at the same time, it
can be close to the door knob, being this a predicate computed by measuring the
distance between the hand and the knob, in the graph representation. Note that
this distance could also be measured with more precision by direct observation
of both the knob and the hand once they are inside the frustum of the robot’s
camera but, at the end, that information would have to be stored in the graph
and propagated to the other agents.

As a hybrid representation that stores information at both metric and sym-
bolic level, the nodes store concepts that can be symbolic, geometric or a mix
of them. Metric concepts describe numeric quantities of objects in the world
that can be structures like a three-dimensional mesh, scalars like the mass of a
link, or lists like revision dates. Edges represent relationships among symbols.
Two symbols may have several kinds of relationships but only one of them can
be geometric. The geometric relationship is expressed with a fixed label called
“RT”. This label stores the transformation matrix between them. A formal def-
inition of DSR can be given as a multi-label directed graph G = (N,E) where
N represents the set of nodes {n1, ...nk} and E the set of edges {e1....er}. An
edge e joining the nodes u and v will be expressed as e = uv.

G = (N,E) where E ⊆ N ×N, uv 6= vu( without loops vv) (1)

According to its nature, the properties of symbolic edges are:

1. Given a symbolic edge e = uv, we cannot infer the inverse e−1 = vu
2. A symbolic edge e = uv can store multiple values
3. The set of e is defined as L = {e1, ...er, (l1, l2, ...ls)} where li 6= lj

On the other hand, according to its geometric nature and the properties of
the transformation matrix RT , the characteristics of geometric edges are:

1. For each geometric edge e = uv, e is unique
2. For each geometric edge e = uv = RT, we can define the inverse of e as e−1 =

vu = RT−1
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Therefore the kinematic chain C(u, v) is defined as the path between the
nodes u, v and an equivalent transformation RT∗ can be computed by multi-
plying the equivalent transformations corresponding to the sub paths from each
node to their closest common ancestor. Note that sub path from the common
ancestor to v will be obtained multiplying the inverse transformations. These
geometrical relations are showed in Figure 3.

A B C

D

RT

at

RTAC = RTAB ×RTBC

RT

in

Fig. 3. Unified representation as a multi-labeled directed graph. Edges are labeled
”at” and ”in” denoting logic predicates between nodes. Also, edges between A,B and
B,C have a geometric type of label, ”RT” that codes a rigid transformation between
them. Geometric transformations can be chained or inverted to compute changes in
coordinate systems.

3 Experimental Results

As an initial validation of CORTEX and DSR in a real robot interacting with
humans, we tested these ideas in Gualzru [26]. Gualzru is a salesman robot that
works autonomously in crowded scenarios and has to step out when a potential
client passes by. He will approach the customer and start a conversation trying
to convince her to go to an interactive sales panel. If the robot succeeds, it will
walk the person to the panel and then will start a new search.

In previous versions of the robot, we found that some synchronization prob-
lems were caused by having a fragmented internal representation. The robot used
two separated graphs, one for the kinematic state and one for symbolic attributes
and predicates, as many current robotic architectures [20]. Agents injecting data
in both graphs at different rates and expecting changes to occur under timeout
restrictions, caused unpredictable behavior very hard to debug. This not well
understood complexity caused a steady decrease of productivity in the project,
to a point where it was difficult to go on. The substitution of the graphs by the
new integrated DSR considerably improved the working conditions again. Not
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all problems were gone and new debugging and monitoring tools are still needed,
but communication among agent started to work flawlessly and more complex
behaviours are now being explored.

A simple example shows how DSR enables the coordination of several agents
in a primitive HR collaboration scenario. DSR provides the agents a common
context with multi-modal, semantically distant information, to take the correct
decisions. When a person entered the robot’s field of view, the Person agent
would inject a simplified skeleton in the kinematic graph at the right position
relative to the floor. Perceptive updates on this representation were performed
smoothly as long as the person remained in view and all agent could access that
cognitive object. At the same time, other agent Dialog was trying to maintain a
conversation with the person following steps of a plan hold in the symbolic graph.
This agent will keep talking under the condition that the person is paying at-
tention, which is computed as a simple function of some person-robot relational
parameters such as presence, proper distance, and face and eyes correctly de-
tected. Those parameters were also being computed by the first agent Person
and injected as attributes in the symbolic graph.

The existence of an integrated representation also helps to the redesign of
the software architecture. For instance, one important drawback of Gualzru was
related to its limited conversational abilities. These limitations greatly affects its
performance. Speech recognition is hard to solve in noisy, crowded scenarios in
which even people find difficulties in understanding each other (see Figure 4). It
is also difficult to understand what the robot is saying. To improve the ability of
the robot to communicate within this scenario, we have added a tactile screen
on the robot. The screen is controlled by a specific agent, but shares information
with the rest of agents on the framework, such as the Dialog one. Thus, it was
easy that this screen displayed what the robot is saying. The screen also allows
the person to answer to the robot by touching the desired response on the screen.
This information, although captured by the Screen agent, is injected in the graph
and made available to the rest, so the agent in charge of the ASR/Dialog can
use it to complete missing data. It is important to note that these concepts can
be updated by the agents at interaction rates.

The ADAPTA project, which gave birth to Gualzru and the advertisement
scenario, started in 2012 and many versions and options of the current DSR have
been evaluated since then. The last demonstration tests will be held in October
2015 a will show us if the DSR graph is able to the sustain the whole architecture
at human interaction rates.

4 Conclusions and Future work

This paper has presented our proposal for internalizing a deep state representa-
tion of the outer world. After testing the previous approaches in very demanding
scenarios, the unified representation arises as our final approach for

– solving the synchronization problem;
– endowing the full kinematic tree with symbolic information; and
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Fig. 4. The Gualzru robot interacting with people at the University of Malaga.

– providing the geometric information to the high-level planner

The unified representation is currently interfaced by a set of task-related net-
works of agents, which will provide broad functionalities such as navigation, di-
alog or multi-modal person monitoring. The current implementation guarantees
that the agents are able to feed the unified representation with new geometric
models or symbolic concepts, and that the data stored in the representation is
kept synchronized with the real world by updating actions performed by dif-
ferent agents. Also, the whole graph is kept synchronized among the agents by
using an efficient publishing mechanism.

Future work will focus on injecting raw data directly in the graph and let the
agents build on it more abstract representations. The processing schema that
we propose admits the inclusion of active perception strategies by mixing top
down -planned- and bottom up -reactive- trends through the agents interaction
with the DSR. Also, we plan to exploit the hierarchical structure in the graph
to optimize the communication mechanism by, for example, allowing temporal
subscriptions to specific parts of the representation -e.g. the person or the robot
arm. It is also needed to evaluate the computational effort associated to the
management of graphs such as the one in Figure 1. Although initially the number
of nodes/arcs may be relatively small, the inclusion of raw data in the leaves, of
new spatial structures discovered during navigation or new predicates relating
logical attributes, might introduce delay or throughput problems affecting the
overall performance.
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