
MIMIC: A Human motion imitation component for
RoboComp

L. V. Calderita1, P. Bachiller1, Juan P. Bandera2, P. Bustos1, and P. Núñez1

1 Robolab, Universidad de Extremadura, Escuela Politécnica, Cáceres, Spain
2 Grupo ISIS, Dpto. Tecnologı́a Electrónica,

Universidad de Málaga, Campus de Teatinos s/n 29071-Málaga, Spain
lvcalderita@unex.es, pilarb@unex.es, jpbandera@uma.es, pbustos@unex.es,

pnuntru@unex.es

Abstract. Human motion perception and imitation have become a key topic for
the robotics research community in the last years. Social robots, that are designed
to work in daily life environments, should be able to detect people using natural
and intuitive channels. The ability to per- ceive and imitate people is not only
required for safety reasons, or to ease human-robot interaction. It also allows the
robot to learn from demon- stration, one of the most powerful tools in the social
learning processes. In the last decade, many learning by imitation architectures
for social robots have been proposed. Most of them require the robot to perceive
and imitate human motion. This paper presents one of the first steps towards the
implementation of such a robotic assistant. More precisely, it describes the inte-
gration of a human arms motion imitation component (MIMIC) into a software
framework specifically oriented to robotics, named RoboComp.

1 Introduction

A new generation of robots has arisen in the last years that is designed to work in daily
life environments [1]. These robots should relate to people, and cooperate with them,
to solve everyday tasks. They have to work in social environments, and they have to
behave socially, thus they are usually named social robots [2]. The term, however, is
usually employed at different contexts, and it is sometimes confused with the term hu-
manoid robot, that was firstly used to name this new generation of robots [1]. Following
previous proposals, in this paper social robots are understood as robots that work in so-
cial environments, and that are able to perceive, interact with and learn from other
individuals, being these individuals people or other social agents [3].

In order to adapt to dynamic, unpredictable environments, social robots are equipped
with many more sensing capabilities than the traditional industrial robots. Among these
sensors, and despite the growing importance of audio and tactile data [2, 4], vision still
represents the main sensory input for most social robots [3].

1.1 From pure visual perception to multisensory systems

Social robots, that have to perceive the same phenomena that people do, traditionally
rely on biologically inspired implementations. Thus, some social robots use a pair of



100 L. V. Calderita et al.

foveal stereo cameras, that aims to imitate human eyes [5]. More practical solutions use
a pair of narrow angle cameras to achieve precise visual perception where the attention
is focused (fovea), and one or more wide angle cameras to maintain a certain level of
awareness about the environment of the robot [4]. A single pair of stereo cameras can
also be an interesting option, specially when hierarchical image processing algorithms
are applied that allow to use a software (or firmware) implementation of foveated vision
[3].

Despite their advantages and usefulness, the previous visual systems have also sev-
eral drawbacks: pure foveal cameras are expensive, unusual, and have limited resolu-
tion. As pointed out by some researchers, hybrid solutions tend to accumulate all visual
processes in a certain type of cameras (i.e. wide angle cameras). This transforms them
into an expensive and complex version of a pair of stereo cameras, or even of a single
low resolution camera. Stereo cameras themselves have to deal with calibration issues,
require textured objects to obtain 3D information, and are very sensitive to noise and
light changes [3].

The issues that affect stereo perception have moved some robotic researchers to
look for alternative -or complementary- perceptual systems. These systems include
laser range finders, TOF cameras or infrarred sensors [6]. They may not be biologi-
cally inspired, but they offer good results when put into practice. Among these sensors,
the infrarred-based sensor used by Kinect represents one of the most convenient com-
plements for vision systems, in terms of price and precision.

1.2 Perception of human motion

Perceiving human motion is not only convenient to ease human-robot interactions. If the
robot is provided with the ability not only of perceiving, but also of imitating human
motion, it will be able to use one of the most powerful tools in the social learning
processes: Learning by Imitation (LbI). Social robots that learn by imitation can be
easily taught by untrained users, as these users only need to demonstrate the task to
perform using the same procedures they would use to teach another human.

In the last two decades, many different LbI systems for social robots have been pro-
posed [2, 3]. Given the perceptual limitations of the used robotic platforms, many of
these systems avoid addressing the complete problem and focus instead on certain par-
ticular tasks. Thus, some proposals rely on kynesthetic teaching, in which the robot read
the positions of its motors, set to passive mode, while the human acts as a puppeteer
[7]. Other systems focus on task-oriented scenarios, where the particular characteristics
of the task lead perception to only certain relevant data (such as the position of a certain
object) [2]. But, in order to achieve LbI systems that are able to adapt to unpredicted
demonstrations, that are able to achieve generalization effectively, and that allow un-
trained users to interact with the robot intuitively, the social robot should be equipped
with the ability to capture human motion, and to imitate it (i.e. translate perceived hu-
man motion to its own motion space) [3].These motion imitation algorithms used in
social robots should consider some specific requirements. First of all, they should not
impose the human performer to wear specific markers or stay at specific scenarios. On
the other hand, social robots should not use algorithms that do not provide an output



MIMIC: A Human motion imitation component for RoboComp 101

at human interaction rates. Finally, detected human poses have to be translated to the
robot body.

Many algorithms has been proposed to achieve these requirements. Most of them
are focused on visual perception. Among these solutions, model-based approaches have
gained a growing popularity [8]. However, the limitations of the visual perception sys-
tems that can be mounted in the head of a social robot make it difficult to find fast but
precise enough mechanisms. Thus, a standarized method to capture human motion in
social robots has not yet been adopted.

In the last year, the apparition of the Kinect sensor, and the open source libraries
provided to use it, has opened a new perspective in the field of on-line, markerless hu-
man motion capture. These libraries only require the human to perform an initialization
pose, and after it they are able to track human motion at a high frame rate, using a
cheap sensor that can be mounted on the head of a robot. As before, it is important to
consider the drawbacks of this solution: it requires initialization, it may produce odd
results specially when the arms move close to the body, and the information about used
algorithms is limited.

1.3 The inverse process. Humans that imitate robots

As commented above, social robots should be able to imitate human motion. But, in
the field of assistive robotics, the inverse process may also be useful. A robot that is
able to execute a movement, and evaluate how people imitate it, could help therapists
to conduct rehabilitation exercises. This role of social robots as assistants for therapists
may benefit from the ability the robot has to store and access on-line information about
the patient such as his/her evolution during the therapy, biosignals, etc. The robot has
also the possibility to adapt the exercises to different people to a level that is difficult to
achieve for a human demonstrator (e.g. the robot may repeat an exercise or wait for a
human response for hours).

This paper presents one of the first steps towards the implementation of such a
robotic assistant. More precisely, it describes the integration of a human motion imi-
tation component (Model-based Interactive Motion Imitation Component, or MIMIC)
and other tracking components into a software framework specifically oriented to robotics,
named Robocomp. MIMIC allows the robot to use an internal human model to imitate
the motion of the perceived human. The set of joint angles of this model for each pose
can then be compared against a set of desired values in order to evaluate the exer-
cise. It is important to consider that imitation, in this paper, is performed in the human
motion space (the virtual human model imitates the perceived human). Translations be-
tween human and robot motion spaces will have to be incorporated to MIMIC in further
works. These works will follow previous contributions of the authors on this research
field [3].

The proposed human motion perception component employs both a color and an
infrared-based sensor (Kinect) as input. For the experiments described in this paper,
different markers have been located in the wrists, elbows and chest, in order to obtain an
accurate measurement of her motion. The human motion perception component relies
on a novel tracking system to follow the 3D movements of these markers on-line. Then,
as commented above, MIMIC uses a virtual model to translate these trajectories to a



102 L. V. Calderita et al.

valid human motion, using a fast, analytic inverse kinematics algorithm. The core of
this model-based algorithm has already been contributed [3], although in this paper an
extended version is presented.

The experiments presented in this paper compares the performance of the vision-
based tracker against the motion tracker used by the OpenNI library, developed for the
Kinect sensor. In order to obtain a quantitative evaluation for these experiments, the
test exercise has been executed not by a human, but by a robotic torso available at the
Robolab group of the Unex. The sequence of angles adopted by the arm motors during
the exercises have been taken as the ground-truth.

The rest of the paper is organized as follows: Section 2 describes the color-based
tracker, Section 3 gives a brief description of the employed model-based motion imita-
tion system, emphasizing its improvements respect to previous implementations. Sec-
tion 4 details the MIMIC component for RoboComp. Section 5 analyzes performed
experiments and, finally, Section 6 concludes the paper.

2 RGBD human arm tracking in rehabilitation scenarios

As in other fields of application, robots can offer several key advantages, such as the
possibility to perform, after establishing the correct set-up, a consistent and personal-
ized rehabilitation treatment without getting tired. Besides, the capacity of the robot to
acquire data could provide an objective quantification of the recovery of the patient.
In this regard, the design of physical sensors for acquiring information of the envi-
ronment has been crucial to achieve success in autonomous robotic field. The use of
PrimeSense RGBD sensor (Kinect style) [9] is rising in the last months for several of
these applications (e.g. navigation, mapping or human-robot interactions). This sensor
allows, simultaneously, to acquire RGB and distance information of the environment,
and it is cheaper than other RGBD sensors using laser technology. In fact, RGBD cam-
eras allow the acquisition of reasonably accurate mid-resolution depth information at
high data rates. In particular, PrimeSense RGBD sensor, is able to capture 640x480
registered image and depth points at 30 frames per second.

In this paper, a finite-state machine is used to estimate the 3D position of the interest
points of each rehabilitation exercise (see diagram in Fig. 1). The rehabilitation exercise
has been limited to the particular case of patients that suffer from injuries or diseases
on their upper limbs. At this respect, three different trackers have been described in the
proposed work. On one hand, elbow and wrist blocks represent two different threads
associated to the elbow and wrist tracking, respectively. This visual tracking is im-
plemented using artificial colored landmarks and a modified version of the well-known
Continuosly Adaptive Mean Shift (CAMSHIFT) algorithm [10]. The vision color track-
ing algorithm used in this paper has been modified from [10] in order to include distance
information acquired by the RGBD sensor. This distance information allows the tracker
to reduce the search windows. On the contrary, the torso is tracked according to AR-
Toolkit [11] and using a particular ART marker.

The new color tracker is composed of three concurrent modules, each one tracking
an anatomical part of the body-arm system. The first one tracks an ARToolkit mark
placed on a static and know position of the body, usually the chest. The second one



MIMIC: A Human motion imitation component for RoboComp 103

Fig. 1: State machine of the proposed human arm tracking for rehabilitation scenarios.

tracks a much smaller color mark placed on the elbow and the third one tracks a last
color mark placed on the wrist. These three modules are connected with signals that
transmit the hierarchical physical restrictions of the geometry of the arm. These restric-
tions define an starting order, and also a restarting order in case any module looses its
target. They also are used to limit the search spaces during the tracking process. Fig.
1 describes the state machine for the human arm tracking. Each individual tracker (el-
bow and wrist) are defined by three different states. On the contrary, ART tracker is
described by two states, init and follow. This ART tracker manages the final system
according to the next state machine description:

1. ART tracker. First, during the initial stage, the init state is executed while the evalu-
ation of the transition condition, that is, the ART marker is detected by the tracker,
is false. The rest of vision color trackers are in the wait state.

2. Vision Color tracker. Once this transition condition is evaluated as true, there is a
transition from the wait state to the init state in both vision color trackers. During
this state, the color search is achieved on a distance range from the ART marker. If
DART is the distance measure from the sensor to the ART marker, the color search
is only achieved from DART - Tf to DART - Tb, being both Tf and Tb, two thresholds
used for limiting the 3D location of the color landmarks front and behind of the
ART marker. The transition condition is the detection of the color landmark.

3. Vision Color tracker. If the evaluation of this transition condition is true, the vision
color tracker state changes to the follow state. Now, according to the distance infor-
mation of the RGBD sensor, a 3D window is generated to reduce the search space.
Similar to the previous state, the size of the windows is selecting according to two
thresholds Dcolor ± Tw/2 to Dcolor ± Th/2, being both Tw and Th, thresholds associ-
ated to the width and height of the window, respectively. The vision color tracking
algorithm is implemented according to the work described in [10].

4. If the color tracker loses the 3D position of the landmark, there is a transition to the
init state. Equally, if the ART tracker loses the ART marker, there is a transition to
its init state, and the color tracker changes to its respective wait state.



104 L. V. Calderita et al.

3 Model-based interactive motion imitation

While the data provided by the RGBD tracker may be used to obtain an estimation of
body links from spatial distances between detected points, they are affected by percep-
tion errors, occlusions and noise. In this paper, a virtual model of a person is used to
help in the perception and imitation process. Fig. 2 shows this model and the Degrees of
Freedom (DOF) of each of its joints. It is scaled to match human height. The objective
for this model is to imitate the pose the human is performing, providing a valid human
pose for each processed frame. The imitation process is executed through the following
steps:

Fig. 2: Human model.

1. The model rotate the torso to match the information provided by the ARToolkit [11]
marker.

2. An arm pose is computed that locates the hand of the model at the desired (per-
ceived) position, while the model elbow is located as close as possible to the per-
ceived elbow. This process is achieved using a fast, analytic algorithm based on
inverse kinematics [3], that has been modified to consider desired elbow positions
(the previous version of the algorithm used only the hand position to compute arm
pose).

3. If the obtained arm pose is not valid (due to collisions or joint limit violations),
alternative poses are explored to make the hand of the model moves as close as
possible to the desired position.

4. Once the human model is imitating the perceived pose, its joint angles are stored as
the representation of the perceived pose.

The use of a model provides several advantages over non-model based algorithms.
First of all, it guarantees that the resulting pose for each frame is valid. This filters
perception errors and noise (e.g. if the tracker provides an erroneous hand pose that is
beyond reachable space, the model will just stretch the arm to its possibilities, avoiding
odd pose data). On the other hand, a model is useful for generalization and comparison



MIMIC: A Human motion imitation component for RoboComp 105

purposes, as it provides a common space in which motion of different performers can
be easily compared.

Finally, the model helps in the perceptual process. If the elbow is not perceived in
certain frames (a common issue due to occlusions), the model is still able to adopt an
arm pose using the perceived 3D position of the hand, and locating the elbow as close
as possible to the position perceived in the previous frame. The resulting arm pose
provides an estimation of the elbow position that allows the system to follow the arm
motion. This estimated elbow position is also feed back to the tracker, that uses this
information to update the elbow search region in the next frame.

4 RoboComp: Building The MIMIC component

RoboComp is a distributed, component-oriented, DSL-based, tool-enhanced, robotics
framework in development since 2005 [16, 19, 20]. Components are processes with
structured interfaces, typically built using object oriented technologies [13, 14]. Each
component encapsulates a functionality and interacts with other components giving
raise to more complex functions sustained by the dynamic interaction among them. On
the other hand, domain specific languages (DSLs) are languages designed to express
concisely and efficiently a particular class of entities [18, 17].

DSLs are used in RoboComp to specify those generic parts of the components that
can be derived automatically from the framework semantics, versus those parts writ-
ten by to the user to express and specific functionality. The generic part contains the
logic of interprocess communication, the general structure of the components -main
program, principal threads, source directory structure, documentation rules, configura-
tion parameters- and some introspection and self-monitoring capabilities. This generic
functionality is implemented with abstract classes that are inherited and extended by the
user specific code to achieve the final working component. Any changes in the generic
structure of the component implies a re-generation of the generic code, and no change
in the code, specific or generic, ever gets to the defining DSLs. Thus, a component is
divided by a tight line separating the generic from the specific. In other words, the set
of DSLs used to generate a component defines unambiguously what is inside the source
code up to the specific part generated by the user [18, 17].

Other DSLs are used in RoboComp to define the syntax of configuration parameters,
the deployment of large sets of components with specific initial parameters, the optional
state-machines that can control the inner functioning of the component and, finally, the
definition of robot kinematics to be used by all components controlling a specific robot.

An special entity in RoboComp is the interface. Interfaces represent a piece of
computing behaviour. They are definitions of the data structures and procedures that
a component has to implement in order to provide that behaviour. A component may
implement several interfaces, and thus, a component can provide different simultaneous
views of itself. Also, an interface can be implemented by many components facilitating,
for example, the integration of similar devices manufactured by different companies.

Currently, RoboComp supports two communications middlewares: Ice by ZeroC
[23] and DDS (Data Distribution Service) [21] in its OpenSplice implementation. [22].
Both technologies are complementary in many senses and offer state of the art perfor-



106 L. V. Calderita et al.

mance and functionality. As a next step in RoboComp development, we are moving
towards a communications abstraction layer that will allow the users to choose among
different available implementations when designing the components.

The RoboComp repository currently has a special set of components, grouped to-
gether with the name of Hardware Abstraction Layer (HAL) that provide access to a
wide variety of robotics hardware. Moreover, there are several repositories maintained
by research groups and companies, providing dozens components implementing a wide
range of functionalities in the fields of robotics and computer vision. To manage the
creation, deploy, debugging, simulation and maintenance of these repositories of com-
ponents, RoboComp counts with several useful tools that eases the development cycle
of robotics software. Also RoboComp can communicate with other frameworks taking
advantage of a increasing amount of coding made by hundred of researchers around the
world. A deeper introduction to RoboComp can be found in [16].

The functionality for human motion imitation in RoboComp has been built using
several components. Fig. 3 shows two screen captures of the RoboComp’s deployment
tool with the components involved. The one on the left shows the components that take
part in the color tracking experiment, and the one on the right the OpenNI tracking
experiment.

For the color tracking experiment, the components involved are:

– Dynamixel (Neck): Belongs to the HAL group and provides access to the set of
servos that move the neck of the robot Ursus.

– Dynamixel (Left Arm): (HAL group) Provides access to the set of servos that move
the right arm of the robot Ursus.

– GestureComp: Coordinates the movement of the 9 servos (neck+arm) to generate
predefined arm and neck gestures.

– KinectComp: (HAL group) Provides access to the Kinect device providing a cali-
brated RGBD image. The calibration takes care of the small, but significant, trans-
lation and rotation between the infrared and the RGB camera.

– ArmTrackerComp: Color tracking component holding the algorithm presented in
Section 2.

– MimicComp: Human torso modelling component activated by the 3D positions
tracked by the ArmTracker component. It integrates the algorithm presented in Sec-
tion 3, and provides concurrently the current kinematic configuration of the model
to other components.

For the OpenNI tracking experiment, the single different component is:

– OpenNITrackerComp: Tracking component using the OpenNI library.

The components written for this work are ArmTrackerComp, OpenNITrackerComp
and MimicComp. The others belong to the RoboComp repository.

ArmTrackerComp integrates the color tracker algorithm described in 2. The imple-
mentation uses the state machine engine provided by Qt taking advantage of its hierar-
chical and concurrent capabilities.

OpenNITrackerComp integrates the OpenNI library in the RoboComp system mak-
ing it usable by the other components in the repository.



MIMIC: A Human motion imitation component for RoboComp 107

Fig. 3: Graph of processes

MimicComp integrates the algorithms developed in Section 3, that combines the
open source 3D graphics engine OSG3 with an analytic inverse kimenatics algorithm,
to provide a realistic model of a human robot torso. We have redefined the application
interface of the program, splitting it into two elements: a set of configuration parameters
and a public RoboComp interface. The configuration parameters provides the compo-
nent with a parametrized start, and the interface provides a way for others components
to communicate with MIMIC.

5 Experimental results

This Section details the experiments performed to obtain a quantitative evaluation of
the human motion imitation system. In this experiments the ground truth is provided by
the robot Ursus, designed and built in Robolab-UEx. It consists of a torso placed over
a mobile platform. The torso has two 5 DOFs arms, a 4 DOFs neck and a head with
an articulated mouth. The motors driving the joints are Dynamixel servos summing a
total of 15 units, of different torques. The robot is placed in front of a Kinect sensor
at a distance between 1 and 6 meters inside our lab. All the processing is done on a i7
computer running at 2.8 GHz.

For this experiments we have selected an exercise consisting on the repetitive flexion
and extension of the elbow. This exercise, being simple, is habitually used in rehabili-
tation therapy of upper limbs.

The setup for RGBD tracker, includes a ARToolKit marker placed on the chest of
the Ursus robot. This mark provides the perceived reference system of the patient -
the robot Ursus in the experiment. There are other two colored marks situated on the
elbow, and on the wrist respectively. The RGBD tracker estimates the 3D positions of
the marks placed on the joints for each acquired frame. The acquisition rate is 20 fps.
The tracker sends this information to the MimicComp so it can imitate the perceived
movement of the robot. At the same time, the MIMICComp sends the position of all

3 www.openscenegraph.org



108 L. V. Calderita et al.

the joints to the RGDBTracker, that uses them to recover from a lost state caused by an
occluded joint -typically the elbow when the arm is completely extended.

While the real application requires a person to perform the motion, a ground-truth
is required for a quantitative evaluation. In the performed tests the ground-truth is ex-
tracted from the joint motor angles of the Ursus robot. As these angles and the perceived
ones are not read in the same time stamps, the later are linearly interpolated in the time
stamps in which motor joint angles are read.

Two different tests were performed. In one of them, the motion is perceived using
the detailed RGBD tracker, reinforced with the MIMIC model-based imitation system.
The other test uses the motion tracker provided by the OpenNI library. It is important
to consider that this tracker requires the user to perform an initialization pose, thus
additional motion has to be programmed for the robot.

Before comparing the results of both tests, the ground-truth values (i.e. motor joint
angles) have been compared to guarantee that both motions are similar enough. Table 1
show the results of this comparison. Maximum differences are under 3.5 degrees, and
mean differences are below 0.1 degrees, thus both motions can be considered similar
enough.

Table 1: Differences between elbow motor angles.

Maximum difference (rad) <0.06
Mean difference (rad) 0.0015
Standard deviation (rad) 0.0145

Fig. 4 shows the perceived elbow angle and the ground-truth, when the motion is
perceived using RGBD tracker plus MIMIC. It can be seen that the perceived motion
follows the real one, but there are two main error sources that affect perception:

– The model arm does not bend to its maximum value. This error is produced by the
ARToolkit[11] marker, that provides an inaccurate orientation for the torso. This
incorrect torso pose affects the reachable space of the arm, and modifies the elbow
angles that have to be adopted to reach certain poses.

– There are certain pose outliers that are caused by tracking errors, that move the arm
to an erroneous pose within its reachable space.

Fig. 5 and Table 2 show the errors obtained when the elbow motion is perceived
using RGBD tracker reinforced with the MIMIC system. The effects of the previously
commented error sources are clearly visible. The effects of the torso errors are difficult
to reduce without considering different torso pose estimators. On the other hand, as Fig.
5 shows, errors produced by the tracker use to appear as outliers, that could be filtered
using RANSAC or other method. The model could also help in filtering these outliers,
by imposing a maximum joint angle velocity for the model joints.

As commented above, the tests have involved two executions of the same exercise.
In the second one, the motion was captured using the OpenNI library. Fig. 6 show the



MIMIC: A Human motion imitation component for RoboComp 109

Fig. 4: Elbow angles obtained by MIMIC, using RGBD proposed tracker.

Fig. 5: Tracking errors for RGBD tracker + MIMIC.



110 L. V. Calderita et al.

results of this test. It can be seen that the exercise requires some prior initialization
movements, but after the OpenNI captures the initial pose, it is able to successfully
track the motion. While maximum and minimum elbow angles are not reached, the
results seem more accurate than with the previous solution.

Fig. 6: Elbow angles obtained by OpenNI human motion tracker.

Fig. 7 and Table 2 confirm that OpenNI tracker, that also benefits from a higher
frame rate, is more accurate than vision-based RGBD tracker, even although the later
is reinforced using MIMIC. The main drawback for OpenNI tracker is the requirement
of an initialization phase. It also uses a too unconstrained model, in which link lengths
may change dynamically, collisions are not considered, and certain poses may lead to
arbitrary changes in the perceived pose (e.g. when the arm is stretched close to the
body).

Table 2: Tracking errors.

RGBD + MIMIC OpenNI tracker
Mean error (rad) 0.3451 0.1261
Standard deviation (rad) 0.2976 0.0880



MIMIC: A Human motion imitation component for RoboComp 111

Fig. 7: Tracking errors for OpenNI.

6 Conclusions and Future Work

The main conclusion of this paper is that OpenNI tracker overcomes the RGBD tracker,
even when this last one is reinforced using a human model (MIMIC) to help in the per-
ception process. OpenNI has also the advantage that it does not require color patches
nor other marks to track human motion. On the other hand, its main disadvantage is
the necessity of performing (and maintaining for some seconds) an initialization pose.
This drawback is specially critical in rehabilitation scenarios, in which the perform-
ers may have different issues regarding the mobility of their limbs. However, OpenNI
is in the process of including additional functionalities and capabilities. Personalized
initialization poses will most probably be added in next versions of the library.

During the experiments, it could be observed that the OpenNI tracker does not con-
sider collisions between body segments (it does not use models for body segments at
all), and modifies dynamically the lengths of these segments. Occlusions of body parts,
on the other hand, make the tracker discard the complete limb for the affected frame.
The effects of all these issues could be reduced if a model would be used to reinforce the
tracking process. Thus, further work will focus on combine the OpenNI tracker with the
MIMIC model (i.e. the RGBD tracker is substituted by the OpenNI tracker). Promising
prior results have been already obtained. In the short term this integration process will
be finished, in the hope that MIMIC becomes a key component to interact with real
robots.

Acknowledgements

This work has been partially supported by grants PRI09A037 and PDT09A044, from
the Ministry of Economy, Trade and Innovation of the Extremaduran Government, and



112 L. V. Calderita et al.

by grants TSI-020301-2009-27 and IPT-430000-2010-2, from the Spanish Government
and the FEDER funds.

This work has been partially supported by the Spanish Ministerio de Ciencia e Inno-
vación (MICINN) and FEDER funds project no. AIB2010PT-00149, TIN2008-06196
and IPT-430000-2010-002, by the Spanish Ministerio de Industria, Turismo y Comercio
project no TSI-020301-2009-27, by the Junta de Andalucı́a project no. P07-TIC-03106
and by the Junta de Extremadura project no. IB10062. We would like to thank Dr. Axel
Pinz for providing us different datasets of stereo image sequences [12]. These datasets
have been widely used to test the approach until its inclusion in the Human Motion
Capture (HMC) framework.

References

1. Inoue, H., Tachi, S., Makamura, Y., Hirai, K., Ohyu, N. Hirai, S., Tanie, K., Yokoi, K. and
Hirukawa, H.: Overview of humanoid robotics project of meti. 32nd International Symposium
on Robotics. 1478 – 1482 (2001)

2. Breazeal, C.: Towards sociable robots. Robotics and Autonomous Systems. 42 (3-4), 167 –
175 (2003)

3. Bandera, J.P.: Vision-based gesture recognition in a robot learning by imitation framework.
PhD Thesis, Dpto. Tecnologı́a Electrónica, University of Málaga (2010)

4. Asfour, T., Regenstein, K., Azad, P., Schr de, J., and Dillmann, R.: Armar-iii: A humanoid
platform for perception-action integration. 2nd International Workshop on Human-Centered
Robotic Systems (2006)

5. Metta, G., Panerai, F., Manzotti, R., and Sandini, G.: Babybot: an artificial developing robotic
agent. Sixth International Conference on the Simulation of Adaptive Behaviors. 42 – 53 (2000)

6. Stanford, S.: PR2 Hardware Modifications and Add-ons (2011)
http://www.ros.org/wiki/Robots/PR2/HardwareMods

7. Calinon, S.: Continuous extraction of task constraints in a robot programming by demonstra-
tion framework. PhD Thesis, École Polytechnique Fédérale de Lausanne (2007)

8. Agarwal, A. and Triggs, B.: Recovering 3d human pose from monocular images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 28 (1), 44 – 58 (2006)

9. Microsoft Kinect, http://www.xbox.com/en-us/kinect
10. Bradski, G.R.: Computer vision face tracking as a component of a perceptual user interface.

Workshop on Applications of Computer Vision. Princeton, NJ. 214 – 219 (1998)
11. Kato H., Billinghurst M., Blanding B., May R.: ARToolKit, Technical Report, Hiroshima

City University (1999)
12. Pötsch, K., Pinz, A.: 3D geometric shape modeling by ’3D contour cloud’ reconstruction

from stereo videos. Computer Vision Winter Workshop (2011)
13. Brugali, D., and Scandurra, P.: Component-based Robotic Engineering. Part I: Reusable

building blocks. IEEE Robotics and Automation Magazine (2009)
14. Brugali, D., and Shakhimardanov, A.: Component-based Robotic Engineering. Part II: Mod-

els and systems. IEEE Robotics and Automation Magazine (2010)
15. Alonso, D., Vicente-Chicote, C.,Ortiz, F., Pastor, J. and Álvarez, B.: V3CMM: a 3-View

Component Meta-Model for Model-Driven Robotic Software Development. Journal of Soft-
ware Engineering for Robotics. 3 – 17 (2010)

16. Manso, L.J., Bachiller, P., Bustos, P., Núñez, P., Cintas R. and Calderita, L.: RoboComp: a
Tool-based Robotics Framework. Proc. of Int. Conf. on Simulation, Modeling and Program-
ming for Autonomous Robots. 251 – 262 (2010)



MIMIC: A Human motion imitation component for RoboComp 113

17. Schlegel, C., Steck, A., Brugali, D. and Knoll, A.: Design Abstraction and Proccesses in
Robotics: From Code-Driven to Model-Driven Engineering. 2nd Int. Conf. on Simulation,
Modeling and Programming for Autonomous Robots. (2010)

18. Brown, A.W.: Model Driven Arquitecture: Principles and practice. Sofware and systems
modeling. 314 – 327 (2004)

19. Martı́nez, J., Romero-Garcés, A., Manso, L.J. and Bustos, P.: Improving a Robotics Frame-
work with Real-Time and High-Performance Features. 2nd Int. Conf. on Simulation, Model-
ing and Programming for Autonomous Robots. (2010)

20. http://robocomp.sourceforge.net
21. Object Management Group: Data Distribution Service for Real-time Systems(DDS), version

1.2 (2007)
22. http://www.prismtech.com/opensplice
23. http://www.zeroc.com


