
Towards the design of efficient and versatile
cognitive robotic architecture based on distributed,

low-latency working memory
Juan Carlos Garcı́a

RoboLab research group
Universidad de Extremadura

Cáceres, Spain

Pilar Bachiller
RoboLab research group

Universidad de Extremadura
Cáceres, Spain

Pablo Bustos
RoboLab research group

Universidad de Extremadura
Cáceres, Spain

Pedro Núñez
RoboLab research group

Universidad de Extremadura
Cáceres, Spain

pnuntru@unex.es

Abstract—Autonomous robots will be present in our daily lives
in the coming years. One of the most critical elements facilitating
this expansion of robots is the concept of Cognitive Robotic
Architectures (CRAs). Thanks to these CRAs, robots are aware
of their state and surroundings and then build all the behaviors
best suited to the scenario on this information. In recent years our
team has proposed an CRA called CORTEX designed for use with
autonomous robots working in human environments. CORTEX
is based on a distributed graph-like working memory where
software agents can read or update information. In this paper,
we describe the design process of the new CORTEX architecture
up to its current implementation. Among the most salient design
requirements is data synchronization between the different agents
in the architecture, low latency, and performance of the new
architecture. To validate the effectiveness of the architecture and
its versatility, we have used our CRA in different use cases,
including social robot navigation and autonomous driving of
connected vehicles.

Index Terms—cognitive architecture, robotics architecture

I. INTRODUCTION

The next generation of autonomous robots will coexist with
humans in uncontrolled environments and multiple purposes.
The main goal of cognitive robotics is to provide autonomous
robots with the ability to plan complex actions and execute
those plans while adapting to unexpected changes. Until now,
most architectures have been problem-specific, providing the
robot with the ability to perceive and act in the environment
[1]. However, robotic applications are multiplying, including
interactions with people. For this reason, it is necessary to
design versatile and efficient cognitive architectures capable
of adapting to different autonomous platforms and responding
adequately to real requirements.

For decades, considerable effort has been made to endow
robots with cognitive architectures. In the comprehensive
review by Kotseruba et al., [1], the authors state that only
very few versatile architectures implement multiple skills for
complex scenarios. One of the architectures cited is CORTEX
[2], [3], our Cognitive Robotics Architecture (CRA) proposal
as an evolution of the RoboCog architecture [4]. In CORTEX,

software agents share a distributed and dynamic working mem-
ory that acts as common knowledge. This working memory is
called Deep State Representation (DSR), and its structure is a
graph composed of nodes and arcs. The term Deep refers to
the hybrid nature of the elements of this graph, geometric and
symbolic, concrete or abstract.

Any efficient cognitive architecture must address four
key dimensions of the design space: i) the trade-off be-
tween decoupling and sharing; ii) the trade-off between top-
down/downward control; iii) the functional content of software
agents; and iv) the granularity of functional decomposition.
Since the conception of CORTEX, we studied different design
choices to include these critical features. First, CORTEX de-
fines software agents as components that provide specific and
limited functionality. For knowledge sharing, while there are
alternatives such as the dynamic approach [7], in our proposal,
these agents have access to a distributed shared memory.
The second dimension is implemented in CORTEX through
deliberative agents with high-level reasoning capabilities that
generate efficient plans in execution times (top-down) and
through the agents themselves locally that communicate with
the rest of the agents (down-top). As for the third item,
CORTEX defines the role of each agent in the global problem
space. Finally, the fourth dimension involves meeting a series
of requirements to have complex architectures but, at the same
time, be computationally efficient and operate in real-time.

CORTEX is currently used in different types of robots
working in real-world scenarios. Some of these use cases
implement complex scenarios involving human-robot interac-
tions. For example, the robot working in public space, such as
an airport, attracts potential consumers to a commercial stand
[2]. In works presented in [8], [9], robots perform geriatric
tests on older adults or physical therapies with children, re-
spectively. Human-aware navigation in different environments
with people has also been addressed in various use cases [10],
[11]. In all these situations, the complexity of the software
is palpable, with more than forty components interconnected
through the CORTEX architecture. After almost five years of
experience in these highly complex use cases, we can assure
that one of the main problems is the bottleneck when accessing978-1-6654-8217-2/22/$31.00 ©2022 IEEE

shared memory. This last causes desynchronization or delays
that, in many situations, harm the efficiency of the architecture.

In [12], the authors outline the first redesign of CORTEX
based on two key technologies: a high-performance pub/sub
middleware that implements reliable UDP multicast and the
use of Conflict-Replicated Data Types (CRDT). The main
contribution of this paper is to extend this initial proposal,
delving into the design process and evaluating CRA perfor-
mance in real use cases. We formulate the problem from the
beginning, providing the design requirements and the solutions
proposed in our final architecture. Furthermore, we validate the
technology in terms of efficiency and robustness in different
complex use cases.

This paper is organized as follows: In Section II we presents
a brief description of CORTEX architecture and the Deep State
Representation. The design requirements and the solutions
achieved are detailed in Section IV III. Section IV details
the architectural design and outlines the implementation of
our RCA. Experimental results are addressed in Section V,
and finally, Section VI describes the main conclusions of this
works.

II. CORTEX ARCHITECTURE AND DEEP STATE
REPRESENTATION

The CORTEX cognitive architecture defines how to design,
modularize and represent the robot’s activities and informa-
tion. In this architecture, activities can be seen as the coop-
eration and coordination between agents performing specific
tasks by writing to a shared data structure. We define this
distributed working memory as Deep State Representation
(DSR). We find that the information stored in DSR has the
own robot’s knowledge regarding modularization and activity
representation. This information may be known beforehand, it
may have been obtained from sensor data, or it may be the
result of the execution of an agent [6].

Formally, our DSR Γdsr is described as the union of two
quivers: one associated with the symbolic part of the repre-
sentation, Γs = (Vs, Es, ss, rs), and the other related to the
geometric part, Γg = (Vg, Eg, sg, rg). A quiver is a quadruple,
consisting of a set V of nodes, a set E of edges, and two maps
s, r : E → V . These maps associate each edge e ∈ E with
its starting node u = s(e) and ending node v = r(e). In
some situations, we denote an edge by e = uv : u → v with
u = s(e) and v = r(e). Within the DSR, both quivers are
finite, as both sets of nodes and edges are finite sets. A path
of length m is a finite sequence {e1, ...em} of edges such that
r(ek) = s(ek+1) for k = 1...m− 1. A path of length m ≥ 1
is called a cycle if s(e1) and r(em) are identical.

The representation of the data stored in DSR is independent
of their nature, although the way they are handled can be
specific. The clearest example is the representation of physical
objects. Physical objects are represented in the graph as nodes
and related to other elements by means of an arc. The edge
includes the geometric information in a homogeneous 4x4 ma-
trix. Non-geometric information is subject to groups of agents
creating their own abstractions of the internal representation

Fig. 1: A simple example of the DSR state in an instant of
time. Edges labeled as has denote logic predicates between
nodes. Edges starting at robot and end at specific sensors
(camera, gps...) are geometric relations and encode a rigid
transformation RT between them.

of Γdsr. A node can belong to more than one abstraction.
Figure 1 shows a simple example of the DSR of the Pioneer
P2AT robot endowed with different sensors and working in
an outdoor area. DSR can be seen as a multigraph consisting
of the different abstractions defined by the agents. High-
level tasks are performed by decomposing them into specific,
smaller tasks, which are implemented in the form of an agent.
Agents can add, modify or delete DSR information. These
changes are available to all other agents without the need for
direct communication between them. By adding to the data
structure the ability to notify agents of external changes, even
reactive agents that only act on demand can be achieved. The
ability to execute multiple missions may require a mission
planning process that ensures the compatibility of the activities
performed in the missions. This paper deals with the design
and implementation of this structure, Γdsr, and the agents that
execute it.

III. DESIGN REQUIREMENT

At the design level, we identify a set of critical requirements
and capabilities that a cognitive architecture should support.
These requirements are described next.

A. Synchronization

In a distributed system, synchronization is the process
by which multiple system participants perform asynchronous

local operations to reach a common state through the mes-
sages sent over the network and the operations performed
to integrate these messages. The synchronization process is
dependent on the consistency and representation model of
the information. If the information is stored in a centralized
manner, the synchronization process is irrelevant, while in an
environment with local replicas, it is a fundamental part [6].
Since CORTEX activities are divided into agents that work
in parallel and independently of each other, maintaining local
replicas seems to be more appropriate. In this section, it is
necessary to discuss how synchronization will be achieved,
what messages will be sent, what content the messages will
have, how messages are integrated, how conflicts are resolved,
the frequency of message sending, and the characteristics of
the communication.

The tool used in CORTEX to perform the synchronization
operations is called CRDT (Conflict-Free Replicated Data
Types) [13]. CRDTs are data types that have the property of
providing eventual consistency of distributed objects. Specif-
ically, the CRDT type used is the Multi-Value Register
(MVreg) [14]. This type keeps only the last local write that
has been performed on the object. To identify which is the last
written data, each local replica includes a monotonic counter
that is updated on writes. When a synchronization message
is received from another remote object, this counter is used
to find if it is newer than other replicas and replace the
current one. If concurrent writes have occurred that result in
the same counter both objects are kept in the register, it may
be necessary to establish how to choose which write is to be
kept if a single value is desired.

B. Performance

When designing the architecture of Γdsr, the performance
requirements of the environments in which it will be executed
have been taken into account. In an execution of CORTEX
we find multiple agents that obtain information, either from a
sensor or from Γdsr, transform it and insert it back into Γdsr.
These agents are in charge of tasks such as the navigation of
a robot, the detection of objects by cameras, etc. These types
of tasks require that the information accessed be as recent
as possible. Keeping the time elapsed between data retrieval
by one agent and its subsequent reading by a different agent
within a few tens of milliseconds is a requirement for many of
the tasks performed to be feasible. In a proper implementation
of the data structure the biggest source of latency in the
information flow of the system would be the communication
network.

C. Memory

The decisions about information representation, synchro-
nization, and the agent-based architecture of CORTEX have
implications for memory usage. Each agent holding a replica
of the complete state in memory has a considerable total
memory cost (M · N , where M is the total memory of the
representation of Γ and N is the number of agents). This
last is justifiable considering the amount of RAM that most

computers have today and that the graph representation usually
takes at most a few MB. However, much more information
could be stored if necessary. Moreover, it seems reasonable
to accept higher memory usage to simplify synchronization
information access and increase availability and performance.

To mitigate the increased memory usage, the implemen-
tation of the data representation must make efficient use of
memory. In addition, mechanisms have been included to allow
agents to discard information they do not intend to use.

D. Network

The network specifications are directly related to the per-
formance requirements and the synchronization model used.
On the one hand, to satisfy the performance requirement, we
must use technologies that allow fast information delivery to
all agents, regardless of the number of agents in the system. It
is also necessary that the size of the messages sent is optimal.
This last is achieved in the design stage, with the use of
Delta-CRDTs [14], and a suitable communication protocol,
and in the implementation, with the information representation
and communication libraries. On the other hand, for the
synchronization model, it is necessary to ensure that all agents
receive the messages sent.

We use the RTPS (Real-Time Publish-Subscribe) communi-
cation protocol over a reliable multicast communication using
UDP [15]. RTPS is a protocol that is part of the DDS (Data
Distribution Service) standard, published by the OMG (Object
Management Group). It is designed to be real-time, error-
tolerant, scalable, configurable (network trust, memory usage,
performance, among others). The protocol follows a publish-
subscribe pattern, allowing communication to be divided by
message types and offering a typing system in the topics to
eliminate possible errors.

E. Scalability

Different factors must be taken into account for the system
to be scalable. Specifically, at the network level, we achieve
scalability by using multicast for transport. This last allows us
to significantly reduce the load on the network by reducing the
number of messages per update from M − 1 in point-to-point
communication with M participants to only a single message
using multicast. The use of Delta-CRDT for synchronization
results in smaller messages, resulting in less network usage
and fewer synchronization operations. At the system design
level, the distributed agent-based architecture allows easy
addition and removal of system participants. The replication
of information per agent solves a potential problem of high
information access times caused by synchronization operations
if the information were centralized in a single location. More-
over, using an agent or component-based architecture allows
the system to be much more distributable than in a monolithic
or less adaptable architecture.

F. Versatility

Several factors determine the versatility of cognitive archi-
tecture. Among them is the difficulty encountered in migrating

the architecture to other autonomous systems or the possibility
of including new independent agents with little effort from
users. The less effort an architecture requires to produce
intelligent behavior in those environments, the greater its
versatility. Using an agent-based architecture facilitates this
requirement, this modularity being indispensable to increase
versatility.

IV. ARCHITECTURAL DESIGN AND IMPLEMENTATION
PROCESS

The design and implementation have been done through
an iterative and incremental process based on a cycle of the
definition of requirements and functionalities, implementation,
search for errors and new requirements through testing and
development of agents, correction of errors, optimization, and
repetition of the process with the new needs found. The
Test-Driven Development methodology inspires part of the
definition of requirements, design, and tests. As the DSR core
and the agents that use it are developed in parallel, validating
the implementations and decisions made during development
is necessary. The way to do this has been the definition of
tests and benchmarks in the requirements identification and
design stages. In addition to the unit tests commonly used
in this methodology, the agents are themselves used as tests.
Here, the requirements often appear as a response to the task
to be accomplished by an agent. By using agents as tests, new
requirements are created that can be implemented and vali-
dated almost directly in DSR. As the iterative process moves
forward, the requirements are higher. In the initial iterations,
the aim was to be reasonably stable and for communications
to work correctly. In contrast, in an intermediate iteration, the
system must be robust. In the last iterations, the aim is for the
APIs to be simple for users, providing a more intelligent code
generation for the agents.

The DSR architecture implements a distributed data struc-
ture based on local copies that synchronize local states with
remote states. The two main elements in each local instance
are the graph and the communication framework for synchro-
nizing information between local copies. The graph elements
are stored on MVReg containers, with three CRDT levels, one
at the node level, one at edge level, and one at the attribute
level. This granularity is intended to reduce the network
load and the computational cost of consistency. The agents
access the information and make local modifications through
an API that encapsulates both elements. At the same time,
the synchronization process is performed asynchronously and
hidden from the user, giving the programmer the feeling of
using a local data structure. To achieve this, the API must
be thread-safe. The programming language chosen for the
implementation is C++. The use of a typed language offers
guarantees during development, compilation, and execution.

The system architecture is divided into three libraries. One
for the communication elements, the types represented by
the graph, the CRDT types, etc. A second one with the
APIs accessed by the programmer and a third one for the
user interface. To simplify development by maintaining APIs

with a reasonable number of functions, the extension of DSR
functions is done by implementing specific APIs for specific
tasks using the available DSR API. An agent manages a DSR
instance, accessed through the DSR API block with one of
the public or extension APIS. Optionally, it can also access
the user interface. Internally, these APIS access the graph,
which is kept up to date with synchronization operations that
fetch data through the Fast-DDS instance. Local changes are
also published to DDS so that the same thing happens in other
running agents.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To analyze the performance of Γdsr, a series of benchmarks
have been performed to test the behavior of the different
technologies used and the implementation decisions that have
been made. These tests measure network latency in different
operations, execution times and network usage. The tests
were performed on a computer equipped with an Intel i9-
10900K processor, 64GB of DDR4 memory on an Ubuntu
20.04 system. Our proposal is integrated into the framework
roboComp1.

A. performance analysis

The performance analysis evaluates the cost of local at-
tribute updates. The test is focused on this operation since
it is the most common in DSR. Attribute updates of edges
and nodes are the same, and their cost is almost identical (in
the edges update, there is extra access to a map). In figure 2a
you can see a comparison between the cost of a local update
for different message sizes and the cost of the same update
on a remote agent. Local updates can be performed in three
different ways. The first one consists of modifying the attribute
by copying it and updating the node, making a copy. In the
second option, the attribute is moved, and the node is copied.
In the third, the attribute and the node are moved. There
is no significant impact on performance for small message
sizes, around 60KB, when using the different alternatives. For
attributes larger than 5MB the cost of copies increases a lot.
Currently, the limitation in the performance of local updates
is in the implementation of MVReg, which performs a copy
of the values when generating a delta. It would be appropriate
to determine whether it is necessary to perform the copy or
is some kind of optimization possible that avoids it. It should
be noted that most attributes used in DSR are minor attributes
of a few bytes, such as numbers, text strings, arrays of a few
elements. Nevertheless, large attributes usually correspond to
messages that are sent in short periods, such as images, so it
is essential to process them efficiently.

The other operations performed on Γdsr are insertion and
deletion of nodes and insertion and deletion of edges. Figure
2b shows the cost in microseconds of the operations in an
environment locally and remotely on the same host. The nodes
and edges inserted in the tests did not include any attributes.

Figure 2c compares the network usage for a different num-
ber of connected agents in which a single agent publishes and

1https://github.com/robocomp

Fig. 2: a) Comparison of update latency for local and remote
messages on the same host using different local update meth-
ods; b) Comparison of local and remote latency for different
operations; and c) Networkg usage with one agent publishing
and multiple agents receiving using multicast and unicast.

the rest receive. The publishing frequency and published data
are the same throughout the test. The result on network usage
is as expected. Unicast has a linear growth while Multicast
keeps the network usage constant.

B. Use cases

The implementation of simulated and real use cases during
the development of the libraries makes it possible to validate
the decisions taken in the development stage and to check
that the requirements of scalability, versatility, performance,
latency and consistency are achieved. We used similar agents
in all the use cases, sending information of different nature and
sizes. The experiments have not been limited to a single test;
on the contrary, we have repeated them with similar results2.

1) human-awareness navigation in simulated scenario: The
first use case implemented is human-awareness robot naviga-
tion in an indoor, controlled space. Social robot navigation
(i.e., the robot navigates in a similar way that people do)
is a complex process that requires multiple tasks running
in parallel. Some of these tasks are social path planning,
people and obstacle detection, positioning the robot itself,
and real-time path correction. Depending on the complexity
of the environment, these number of tasks can be increased
or reduced. The agent-based architecture allows the change
in complexity to be reduced to adding agents that work on
the navigation-related data. In our implementation, six agents
work in parallel. We add the agent that connects to the
simulator and other agents related to the interaction between
the robot and the people, adding tasks such as people detection,
control over navigation routes, etc.

2The reader can view the videos of these use cases at https://youtu.be/
yzEDNB4mxj4

Fig. 3: First use case: human-awareness robot navigation using
the Coppelia (Vrep) simulator

Fig. 4: Second use case: outdoor robot navigation in real
scenario using the Pioneer P2AT robot. The video shows the
most relevant agents of the experiment, including the local
navigation agent.

The six main agents implemented are: i) path follower, in
charge of moving the robot using the route calculated by other
agents and validating the movements with the information
from the omnidirectional laser; ii) social path planner astar,
in charge of planning the route and updating it iteratively;
iii) social elastic band, which smoothes the path designed
by the previous agent using the robot’s sensors; iv) mis-
sion controller simulated, which allows navigation by cre-
ating plans that subsequently generate the routes; v) hu-
man social spaces agent, in charge of the generation of per-
sonal and interaction spaces for humans; and v) bumper, which
creates a virtual bumper that restricts movements very close
to physical elements, correcting the robot’s trajectory. Fig. 3
shows a snapshot during the navigation of the robot, where
the 2D view of the DSR can be seen in the user interface of
the social agent.

2) Outdoor navigation in real scenarios: The second use
case is the navigation of a Pioneer P2AT robot in an outdoor
environment. In addition to working in a larger environment,
when leaving the simulator and using real robots, we may
encounter much less predictable operations and situations than
those that appear in the simulator. These differences can appear
in the information from the sensors (inaccuracy in cameras,
lasers, etc.), in the robot components (wheels, servomotors,
etc.) and even in the environment (changes in furniture, groups
of people, etc.).

https://youtu.be/yzEDNB4mxj4
https://youtu.be/yzEDNB4mxj4

Fig. 5: Third use case: indoor robot navigation in real scenario
with people. The video depicts the output of the most relevant
agents of the architecture: among others, the social mapping
agent, the human capturer agent, RGBViewer, and the evolu-
tion of the DSR.

Thanks to the component-based architecture, it is possible
to reuse most of the navigation agents (path planner astar,
path follower, elastic band, bumper, etc.) in robots with dif-
ferent sensors and features by changing only the configuration
files. This is also because the agents do not try to operate the
robot directly, but write information to the shared memory
and then a specific agent for the interaction with the robot is
in charge of setting the robot in motion. The result of this
design and programming model is agents that are much more
versatile and less dependent on the specific technologies of
each use case. For each type of robot there are specific agents
for the missions they perform. In the case of the Pioneer
robot, it is mission controller pioneer, which replaces the
mission controller simulated agent. For security and testing
reasons, robocomp agents or components are also added for
manual control of the robots.

3) Indoor robot navigation in real scenarios with people:
In the third use case, the robot used is a differential base
endowed with different sensors for its navigation in an indoor
environment. The agents used are similar to those presented
in the first use case but, this time, facing real situations. In
addition, in these spaces, different sensors are installed that
add information to DSR and allow the execution of more
complex tasks or with greater precision. The representation
of all the information acquired by the sensors in the physical
space, the robot’s sensors, the pre-known information and the
logical information of the agents generates a cyber-physical
space. This space is stored in DSR. Some of the sensors that
are contemplated to be included are cameras, used for the
detection of people, temperature, CO2 or humidity. Fig. 5
illustrates the Giraff robot during the tests. The DSR is also
shown in the figure.

VI. CONCLUSIONS

In this paper, we examine the design process of a new
cognitive architecture for robots that extends the CORTEX ar-

chitecture to a low-latency distributed working memory Γdsr.
The proposal combines δ-CRDTs and a high-performance
pub/sub middleware. We have validated the architecture in
terms of throughput, consistency and latency, prerequisites for
multiple agents of different complexity to work together to
pursue a goal. We have evaluated the architecture in three
use cases of different complexity, both in simulated and real
environments. Our results are good indicators of the potential
that a distributed, low-latency working memory may have in
future RCAs, where software complexity will be a significant
issue for developers and roboticists.

ACKNOWLEDGMENT
This work has been partially supported by the Feder

funds and by the Extremaduran Goverment projects GR21018,
IB18056, and by the MICINN RTI2018-099522-B-C42.

REFERENCES

[1] Kotseruba, I., Gonzalez, O., Tsotsos, J. ”A Review of 40 Years of Cog-
nitive Architecture Research: Focus on Perception, Attention, Learning
and Applications”, in Tech. rep, 2016.

[2] Romero-Garces, A., Calderita, L.V., Martı́nez, J., Bandera, J.P., Marfil,
R., Manso, L.J., Bandera, A., Bustos, P. ”Testing a fully autonomous
robotic salesman in real scenarios”, in IEEE International Conference
on Autonomous Robot Systems and Competitions, pp. 1–7, 2015.

[3] P. Bustos Garcı́a, L. J. Manso Argüelles, A. Bandera, J. P. Bandera,
I. Garcı́a-Varea, and J. Martı́nez-Gómez. ”CORTEX: a new Cognitive
Architecture for Social Robots” in Eucognition meeting – cognitive robot
architectures, Viena, 2016.

[4] L. J. Manso, L. V. Calderita, P. Bustos, J. Garcia, M. Martinez, F.
Fernandez, A. Romero-Garces, and A. Bandera. ”A General-Purpose
Architecture to Control Mobile Robots” in XV Workshop of physical
agents: Book of proceedings, 2014.

[5] Bustos, P., Manso, L., Bandera, J., Romero-Garces, A., Calderita, L.,
Marfil, R., Bandera, A. ”A unified internal representation of the outer
world for social robotics”, in ROBOT conference, vol. 2, pp. 733–744,
2015.

[6] L.V. Calderita. Deep State Representation: an unified internal repre-
sentation for the robotics cognitive architecture CORTEX. PhD thesis,
Universidad de Extremadura, 2016.

[7] RD Beer. Dynamical approaches to cognitive science. Trends in cogni-
tive sciences, 4(3):91–99, mar 2000.

[8] D. Voilmy, C. Suarez, A. Romero-Garcés, C. Reuther, J.C. Pulido, R.
Marfil, L. Manso, K. Lan, A. Iglesias, J.C. González, J. Garcia, A.
Garcia-Olaya, R. Fuentetaja, F. Fernández, A. Duenas, L. Calderita, P.
Bustos, T. Barile, J.P. Bandera, and A. Bandera. ”Clarc: A cognitive
robot for helping geriatric doctors in real scenarios”, in ROBOT, volume
1, pages 403–414, 2017.

[9] J.C. Pulido, J.C. González, C. Suarez-Mejias, A. Bandera, P. Bustos, and
F. Fernández. ”Evaluating the child-robot interaction of the naotherapist
platform in pediatric rehabilitation”, in International Journal of Social
Robotics, pages 16–26, 2017.

[10] Vega, A., Manso. , Luis J.. Macharetc, D., Bustos, P., and Núñez
P. ”Socially aware robot navigation system in human-populated and
interactive environments based on an adaptive spatial density function
and space affordances”, in Pattern Recognition Letters, vol 118, pp. 72–
84, Elsevier, 2019.

[11] A. Vega, L. V. Calderita Estévez, P. Bustos Garcı́a, and P. Núñez Trujillo.
”Human-aware robot navigation based on time-dependent social interac-
tion spaces: a use case for assistive robotics”, in 2020 IEEE International
Conference on Autonomous Robot Systems and Competitions, 2020

[12] J.C. Garcı́a Garcı́a. ”G: a low-latency, shared-graph for robotics cogni-
tive architectures”, Master Thesis, Escuela Politécnica, 2021.

[13] M. Shapiro, N. Pregui, C. Baquero, and M. Zawirski. ”Conflict-free
Replicated Data Types”. Research Report RR-7687, July 2011.

[14] P. S. Almeida, A. Shoker, and C. Baquero. ”Delta state replicated data
types”. CoRR, abs/1603.01529, 2016.

[15] https://www.eprosima.com/index.php/resources-all/whitepapers/rtps,
availabe february, 2022.

https://www.eprosima.com/index.php/resources-all/whitepapers/rtps

	Introduction
	CORTEX architecture and Deep State Representation
	Design requirement
	Synchronization
	Performance
	Memory
	Network
	Scalability
	Versatility

	Architectural design and implementation process
	Experimental results and discussion
	performance analysis
	Use cases
	human-awareness navigation in simulated scenario
	Outdoor navigation in real scenarios
	Indoor robot navigation in real scenarios with people

	Conclusions
	References

