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Abstract— This paper presents a geometrical feature detection
system to use with conventional 2D laser rangefinders. This
system consists of three main modules: data acquisition and
pre-processing, rupture and breakpoint detection and feature
extraction. The novelty of this system is a new efficient approach
for natural feature extraction based on curvature estimation.
This approach permits to extract and characterise line segments,
corners and curve segments from the laser scan. Experimental
results show that the proposed approach is very fast and permit
to verify its effectiveness in indoor and outdoor environments.

I. INTRODUCTION

Localisation is a fundamental competence for autonomous
mobile robot navigation systems. The idea behind most of
the current localisation sytems operating in a known indoor
environment is that the robot carries sensors to perceive the
environment and match the obtained data with the expected
data available in a map. The robot uses this operation to
update its pose and correct the localisation error due to
odometry slippage. In addition, sensor information can be
used to simultaneously localise the robot and build the map
of the environment along the robot’s trajectory. The difficulty
of the simultaneous localisation and map building (SLAM)
problem lies in the fact that an accurate estimation of the
robot trajectory is required to obtain a good map, and for
reducing the unbounded growing odometry errors requires to
associate sensor measurements with a precise map [14]. In
order to increase the efficiency and robustness of the process,
sensor data have to be transformed in a more compact form
before attempting to compare them to the ones presented
on a map or store them in a currently built map. In either
case, the choosen map representation heavily determines the
precision and reliability of the whole task [13]. Typical choices
for the map representation include cell-based [6], topological
[7], feature-based models [14] and sequential Monte Carlo
methods [15]. In this paper, we adopt a feature-based approach
for the map representation. This one allows the use of multiple
models to describe the measurement process for different
parts of the environment and it avoids the data smearing
effect [14]. However, the success of this representation is
conditioned on i) the existence of accurate sensors capable of
discriminating between similar features and ii) the availability
of fast and reliable algorithms capable of extracting features
from a large set of noisy and uncertain data. Respect to
the first question, sonar or laser range sensors or vision-

based systems can be employed. Sonar sensors suffer from
frequent specular reflections and a significant spread of energy
(beamwidth). Applying vision to feature extraction leads to
increase CPU usage due to the complexity of the algorithms
required. If we assume that the structural features commonly
found in the environment are invariant to height (e.g. walls,
corners, columns), a planar representation would be adequate
for feature extraction. A laser range scanner is capable of
collecting such high quality range data and it suffers from very
small number of specular reflections. The angular uncertainty
of the laser sensor is very small and, therefore, it can provide a
very fine description of the surroundings to the robot. Finally,
although from the perspective of cost, laser scanners are more
expensive than sonar sensors, it can be appreciatted that it is
an affordable device for most robotic systems.

On the other hand, pattern recognition concepts and algo-
rithms can be applied to extract features from sensor data.
Thus, simple methods have been broadly used to support
mobile robot operation using line or point features extracted
from range images [16][5]. Although these methods are very
fast, they have problems to deal with adverse phenomena such
as false measurements on surface limits [4]. Besides, they do
not consider sensor motion. More robust methods that take
into account sensor motion have been also proposed [2][10].
These methods are based on more elaborate concepts, like the
Hough Transform [2], the fuzzy clustering [4] or the Kalman
Filter [13]. The main disadvantage of the majority of these
methods is that they only look for one type of feature (e.g,
line segment). Therefore, they are limited to find this feature
in the measurement.

In this paper, the laser scan is analysed to detect rupture
points and breakpoints [4] and three features of interest: line
segments, corners and curve segments. Such items collect
information about the environment as follows (see Fig. 1):

• Rupture points are scan measurements associated to
discontinuities due to the absence of obstacles in the
scanning direction.

• Breakpoints are scan discontinuities due to change of
surface being scanned by the laser sensor.

• Line segments result from the scan of planar surfaces
(e.g. walls).

• Corners are due to change of surface being scanned or to
change in the orientation of the scanned surface. Corners
are not associated to laser scan discontinuities.
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Fig. 1. Sensor information obtained from a single laser scan using a 180o

SICK laser scanner.

• Curve segments result from the scan of curve surfaces
(e.g. trees or cylindrical columns).

In what follows, we describe a geometrical feature detection
framework for use with conventional 2D laser sensors. The
framework is composed of three procedures: data acquisition
and pre-processing, breakpoint detection and feature extrac-
tion. This scheme has been inspired from [5][4]. For data
pre-processing and breakpoint detection, the motion correction
algorithm proposed by Arras et al [2] and the adaptive algo-
rithm proposed by Borges and Aldon [4] are respectively em-
ployed. The contribution of this paper is the feature extraction
algorithm, which is based on adaptive curvature estimation.
This algorithm uses the laser scan measurements between two
consecutive breakpoints (or rupture points) like an open con-
tour, and it permits to obtain line segments, corners and curve
segments in a fast and robuts way. The adaptive mechanism
for curvature estimation avoids to employ a initially fixed
threshold that may be problematic when different parts of the
laser scan are analysed.

This paper has been organised as follows: Section 2 de-
scribes the characteristics of the laser sensor and the data pre-
processing. Section 3 briefly presents the adaptive breakpoint
detection method proposed by Borges and Aldon [4]. Section 4
describes the proposed algorithm for feature extraction based
on curvature estimation. The adaptively estimated curvature
function is introduced and its applications for line segment,
corner and curve segment extraction is analysed. Section 5
presents experimental results and, finally, Section 6 sum-
marises conclusions and future work.

II. LASER SCAN DATA ACQUISITION AND

PRE-PROCESSING

The information provided by laser sensors in a single scan
is usually quite dense and has good angular precision. Range
images provided by laser rangefinders are typically in the form
{(r, φ)l|l = 1...NR}, on which (r, φ)l are the polar coordi-
nates of the l-th range reading (rl is the measured distance

of an obstacle to the sensor rotating axis at direction φl). The
scan measurements are acquired by the laser rangefinder with
a given angular resolution Δφ = φl −φl−1. The distance rl is
perturbed by a systematic error, εs, and a statistical error, εr,
usually assumed to follow a Gaussian distribution with zero
mean and variance σ2

r . Then, if rm is the measured distance
and rt the true obstacle distance, it can be considered that they
are related by

rm − rt = εs(rm) + εr (1)

Our laser rangefinder is a SICK Laser Measurement System
(LMS) 200, and the experiments have been done with the
LMS doing planar range scans with scanning angle of 180o

operating at frecuencies of about 60 Hz. In these conditions,
the SICK LMS200 laser sensor exhibes a systematic error of
±15 mm and a statistical error (σr) of 5 mm. Taken several
values of rm for rt ∈ [0.1, 8] m, the systematic error εs(rm)
can be easily approximated by a sixth-order polynomial which
fits the differences rm − rt in the least-squares sense [4].
This polynomial is used for compensating the systematic error
according to the model (1). The residual noise after systematic
error correction is compatible with the value σr=0.005 m
provided by the laser rangefinder manufacturer.

When range images are taken with the robot in motion,
they may be deformed given the scanning time. In such cases,
a compensation algorithm based on estimates of the robot
motion should be applied. In our system, the motion correction
algorithm described in [2] is employed. Basically, this algo-
rithm compensates for the vehicle displacement during a scan
by transforming each range reading acquired at instant time tl
to the desired reference time t0. Let {(x, y)l|l = 1...NR} be
the cartesian representation of the range images, where xl =
rlcosφl and yl = rlsinφl, and pl = (xs, ys, θs)l the sensor
absolute position when the l-th range reading is acquired. At
the l-th range reading acquisition, the local coordinate frame
has been displaced pl

d = pl−p0 from the start of range reading
acquisition. In order to recover the coordinates of the l-th
range reading when the sensor is on p0, (x0

l , y
0
l ), the sensor

displacement is taken into account as

(
x0

l

y0
l

)
=

(
cosθl

d sinθl
d

−sinθl
d cosθl

d

)
·
(

xl + xl
d

yl + yl
d

)
(2)

Thus, it is not necessary to know the sensor absolute pose
at each lth point, but its relative displacement. In our experi-
ments, it is assumed that odometry can provide a good estima-
tion of this displacement. In fact, the operating frequency of
the laser rangefinder is very high and the sensor displacement
pl

d is interpolated by a linear relation between p0
d and pNR

d .
These values can be derived from odometry.

Finally, at the same time that the systematic error and
the motion are corrected, rupture points can be detected. A
rupture point is defined as a discontinuity during the laser
measurement. SICK LMS200 returns a special binary data to
indicate this occurrence.
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III. BREAKPOINTS DETECTION

Segmentation is a process of aiming to classify each scan
data into several groups, each of which possibly associates
with different structures of the environment. The segmentation
criterion is based on the distance between two consecutive
points (r, φ)l−1 and (r, φ)l. Range readings belong to the
same segment while the distance between them is less than a
given threshold. Isolated range readings are rejected. In order
to determine the segment boundaries, we use the adaptive
breakpoint detector developed by Borges and Aldon [4]. In this
algorithm, two consecutive range readings belong to different
segments if

||(r, φ)l − (r, φ)l−1|| > rl−1 · sinΔφ

sin(λ − Δφ)
+ 3σr (3)

where Δφ is the laser angular resolution, λ is an auxiliary
constant parameter and σr the residual variance. In our ex-
periments, the parameter values are σr=0.005 m and λ=10o

[4].

IV. FEATURE EXTRACTION BASED ON ADAPTIVELY

ESTIMATED CURVATURE FUNCTION

Curvature functions basically describe how much a curve
bends at each point. The peaks of a curvature function corre-
spond to the corners of the represented curve and their height
depends on the angle at these corners. Flat segments whose
average value is larger than zero are related to curve segments
and those whose average value is equal to zero are related to
straight line segments. Fig. 2a presents a curve yielding two
corners (points 2 and 3) and a curve segment (from point 3 to
4). Peaks corresponding to 2 and 3 can be appreciatted in its
curvature function (Fig. 2b). It also shows that segment 3-4
has an average value larger than zero, but it is not flat due to
noise. Nevertheless, peaks in that segment are too low to be
considered corners of the curve. Finally, segments 1-2 and 2-3
present a curvature average value near to zero, as expected in
line segments.

In order to calculate the curvature of a shape, Mokharian and
Mackworth [9] employes a formula involving the first and sec-
ond order directional derivatives of the shape coordinates, once
the shape has been previously filtered with a one-dimensional
Gaussian filter to remove noise. Agam and Dinstein [1] define
the curvature at a given point as the difference between the
slopes of the curve segments on the right and left side of
the point, where slopes are taken from a look-up table. Liu
and Srinath [8] calculate the curvature function by estimating
the edge gradient at each shape point, which is equal to the
arctangent of its Sobel difference in a 3x3 neighbourhood.
Arrebola et al [3] define the curvature at a given point as the
correlation of the forward and backward histograms in the k-
vicinity of the point, where the resulting value is modified
to include concavity and convexity information. It can be
appreciatted that most algorithms implicitly or explicitly filter
the curve descriptor at a fixed cut frequency to remove noise
and provide a more robust estimation of the curvature at
each shape point. However, features appear at different natural

Fig. 2. a) Segment of a single laser scan (�-breakpoints,o-detected corners);
and b)curvature function associated to a).

scales and, since most methods filter the curve descriptor at a
fixed cut frequency, only features unaffected by such a filtering
process may be detected. Thus, algorithms described above
basically consist of comparing segments of k-points at both
sides of a given point to estimate its curvature. Therefore, the
value of k determines the cut frequency of the curve filtering.
In these methods, it is not easy to choose a correct k value:
when k is small, the obtained curvature is very noisy and,
when k is large, corners which are closer than k points are
missed. To avoid this problem, some methods propose iterative
feature detection for different cut frequencies, but they are
slow and, in any case, they must choose the cut frequencies
for each iteration.

In this work, we employ a curvature function that overcomes
the aforementioned problems. Instead of choosing a constant
k for the whole function, k is adaptively changed according
to the distance between possible corners. Thus, the curve is
filtered in an adaptive way depending on its local nature. In this
case, noise is removed, but features are nevertheless detected
despite their natural scale. The proposed method for adaptive
curvature estimation in laser scan data is a modified version of
[11] and, for each range reading i of a laser scan, it consists
of the following steps:

1) Calculation of the maximum length of laser scan pre-
senting no discontinuities on the right and left sides of
the working range reading i: Kf [i] and Kb[i], respec-
tively. Kf [i] is the largest value that satisfies
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Fig. 3. Kf and Kb values associated to the range readings of the laser scan
in Fig. 2a.

d(i, i + Kf [i]) > l(i, i + Kf [i]) − Uk (4)

being Uk a constant value that depends on the noise level
tolerated by the detector, (d(i, i+Kf [i]) is the Euclidean
distance from range reading i to its Kf [i]−th neighbour
and (l(i, i + Kf [i]))) is the real length of the laser scan
between both range readings. Both distances tend to be
equal in absence of corners.
Kb[i] is also set according to Eq. (4), but using i −
Kb[i] instead of i + Kf [i]. The correct selection of the
Uk value is very important. Thus, if the value of Uk is
large, Kf,b[i] tends to be large and some corners may be
missed and if it is small, Kf,b[i] is always very small and
the resulting function is noisy. However, it is quite easy
to fix a suitable Uk[11]. In our case, it has been proven
that Uk=1.0 works correctly in all our experiments. Fig.
3 presents an example of the Kf [i] and Kb[i] values
associated to the range readings in Fig. 2a. It can be
noted that the Kf [i] and Kb[i] values associate to range
readings i located near to corner are reduced in order to
accomodate them to the laser scan contour.

2) Calculation of the local vectors �fi and �bi associated to
each range reading i. These vectors present the variation
in the x and y axis between range readings i and
i + Kf [i], and between i and i − Kb[i]. If (xi, yi) are
the coordinates of the range reading i, the local vectors
associated to i are defined as

�fi = (xi+Kf [i] − xi, yi+Kf [i] − yi) = (fxi
, fyi

)
�bi = (xi−Kb[i] − xi, yi−Kb[i] − yi) = (bxi

, byi
)

(5)

3) Calculation of the angle associated to each range reading
of the laser scan. According to the works of Rosenfeld
and Johnston [12], the angle at range reading i can be
estimated by using the equation:

θi = arccos

(
�fi · �bi

|�fi| · |�bi|

)
(6)

4) Detection of line segments over |θi|. Line segments
result from the scan of planar surfaces. Therefore, they
are those sets of consecutive range readings which: i)
are under a minimum angle (in our experiments, this
minimum curvature height, θmin, has been fixed at
0.05); and ii) have a size greather than a minimum length
value (lmin=10 range readings).

5) Detection of curve segments over |θi|. Curve segments
result from the scan of curve surfaces. Contrary to the
curvature values associated to a line segment, it can be
appreciated that the curvature function associated to a
curve segment presents a consecutive set of local peaks,
some of them could be wrongly considered as corners.
To avoid this error, the algorithm associates a cornerity
index to each set of consecutive range readings whose
θi values are over θmin or under −θmin and have a size
greather than lmin. This cornerity index, ci, is defined
as

ci =
1

ie−ib

∑ie

j=ib
θj

maxi∈(ib,ie){θi} (7)

where ib and ie are the range readings that bound the
possible curve segment. These values are selected using
a very low threshold in the curvature function. If ci is
close to one, the mean curvature of the segment and
its maximum value are similar, and the segment can be
considered as a curve segment. If ci is low, the mean
curvature of the segment is lower than its maximum
value. Then, the segment cannot be considered as a
curve segment. Therefore, curve segments are those sets
of consecutive range readings which do not define a
line segment and have a cornerity index greater than
a given threshold Uc (Uc has been fixed at 0.5 in
all experiments). Curve segments are characterised by
its centre of curvature. In order to obtain it, we must
previously obtain the radius of curvature ρ.

ρ =
1

( 1
ie−ib

∑ie

j=ib
θj)c

(8)

where c is a constant that relates curvature values
and centimetres. From ρ, we can obtain the centre of
curvature associated,

xc = xib + ρcos(θ ± π/2)
yc = yib + ρsin(θ ± π/2) (9)

where θ =
∑ie

i=1 θi is the accumulated angle at point
(xib, yib) and the sign of (9) is plus if the curve segment
is concave and minor if it is convex.

6) Detection of corners over |θi|. Although the corner
value is a single curvature point, it is not defined in
the curvature function as a Dirac delta function. Thus,
the corner is always defined by a value associated to
a local peak of the curvature function, and a region
bounded by two range readings, ib and ie. Therefore,
it can be characterised by a cornerity index, ci. Taken
this into account, corners are those range readings which
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do not belong to any line or curve segments and satisfy
the following conditions: i) they are local peaks of the
curvature function; ii) their |θi| values are over the min-
imum angle required to be considered a corner instead
of a spurious peak due to remaining noise (θmin); iii)
they are located between two segments which have been
marked as line or curve segments, these two segments
determine the region of the corner, (ib, ie); and iv) their
cornerity indexes are lower than Uc.

The advantage of estimating the curvature in an adaptive way
can be appreciated in Fig. 4. Fig. 4a shows a single laser
scan between two breakpoints. The laser scan presents three
corners, that have been marked with circles over the laser scan.
It also consists of two line segments and a curve segment.
Fig. 4b presents the curvature function associated to Fig. 4a
obtained by the proposed algorithm. It can be noted that all
features have been correctly detected. The limits that define
each feature and the cornerity indexes of the curve segment
and corners have been marked on the figure. Fig. 4c shows two
curvature functions associated to Fig. 4a obtained by using two
constant K values. It can be appreciated that when a low K
value is used (K=5), the curvature function is too noisy and
false corner detections occur. On the contrary, if a high K
value is used (K=15), the laser scan is excessively filtered,
and laser scan details might be lost.

V. EXPERIMENTAL RESULTS

The feature extraction system has been implemented on
two different mobile robots, an ActivMedia Pioneer2-AT that
operates outdoors and a Nomadics Tech. Nomad200 that
operates in an office-like indoor environment. Besides, during
the experiments, people were walking around making the
feature detection task even more challenging. To illustrate the
accuracy of our method, two representative examples of its
performance are shown in Fig. 5. Figs. 5a and 5b present two
scan data collected in an indoor environment (our experiments
in outdoors environment obtain a similar results). The laser
scan range readings have been represented over the real layout.
It can be appreciated that to acquire these two laser scans, the
robot has been stopped, being the difference between laser
scans due to there are two moving persons in front of it.
Figs. 5c and 5d show the detected line segments, corners and
curve segments associated to Figs. 5a and 5b, respectively.
These indoor examples show the capability of the algorithm
to correctly detect line and curve segments and corners and
also the stability of these detections. The presence of the
moving persons could be detected by analizing the obtained
results (segments 8 and 3 in Fig. 5d). Fig. 5e presents the
curvature functions associated to the laser scan in Fig. 5b. The
different curvature functions are bounded by breakpoints or
rupture points. All features have been correctly detected, and
it can be noted that several peaks presented in the curvature
functions have been discarded as corners because they are not
bounded by line or curve segments. Finally, the total time
neccesary to process the scan data is very reduced (less than
12 ms in a 400 MHz PC). Compared to other feature extraction

Fig. 4. a) Segment of a single laser scan (�-breakpoints, o-detected corners);
b)curvature function associated to a) obtained by using an adaptive K value;
c) curvature functions associated to a) obtained by using a constant K value
(K=5 and K=15).

algorithms, the proposed method permits to extract several
features with very low computational requirements. In contrast
to other algorithms that require iterative processing of the same
laser scan [13], the described algorithm adaptively filters the
laser scan depending on the natural scale of the contour range
readings and determines easily the parameters of the features.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a new algorithm for feature extraction from
laser scan data is presented. This algorithm can provide
line segments, corners and curve segments to the mapping
and localisation modules thus reducing the time required
for a mobile robot to succesfully localise itself. The main
advantages of using an adaptive noise removal are that: i)
features are detected at a wide range of scales for a constant
set of detection parameters; and ii) estimated curvature is
better defined. The accuracy and robustness of the proposed
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Fig. 5. a) Segmentation of the laser scan #1 (�-breakpoints, o-detected corners); b) Segmentation of the laser scan #2 (�-breakpoints, o-detected corners);
c) line segments, corners and curve segments from a); d) line segments, corners and curve segments from b);and e) curvature functions associated to b).

method was demonstrated in a real world environment while
meeting real-time requirements. Future work includes the
development of an algorithm for robot localisation based on
the extracted features and to test it in dynamics environments.
This algorithm must be capable to differentiate static and
dynamic parts of the environment and therefore, to represent
only these static parts on a map. The union of the static map
and the moving objects could provide a complete description
of the environment.
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