
JOURNAL OF PHYSICAL AGENTS, VOL. 7, NO. 1, JANUARY 2013 39

Progress in RoboComp
Marco A. Gutiérrez, A. Romero-Garcés, P. Bustos, J. Martı́nez

Abstract—During the last six years the RoboComp robotics
framework has been steadily growing in the number of software
components, the variety of robots supported and in new solutions
to the maintenance of large robotics software repositories. In this
paper we present recent advances in the formal definition of the
RoboComp component model and a new set of tools based on
Domain Specific Languages that have been created to simplify
the whole development cycle of the components. Moreover, a
new robot simulation tool has been created providing perfect
integration with RoboComp and better control over experiments
than current existing simulators. Finally, the paper describes a
working solution to the important problem of communications
middleware independence, which allows users to decide which
middleware the components will be compiled with. Our solution
has been validated by the integration of Nerve, a novel middle-
ware for critical robotics tasks, in RoboComp.

Index Terms—Robotics Framework, Software Engineering,
middleware, performance, robotics

I. INTRODUCTION

ROBOTICS software has to deal with very specic prob-
lems such as complexity, code reuse, scalability, robust-

ness, distribution, language and platform support, or hardware
independence. These problems should be addressed with ap-
propriate software engineering techniques and should be trans-
parent to the developer when possible. Software complexity,
from the developer point of view, is an important topic because
scalability decreases as complexity increases. The robotics
community is already aware of this fact and has steered
towards component oriented programming (CBSD) [1]. Many
different approaches have raised in order to solve the robotics
specific issues. RoboComp [2] is a robotics framework focused
on ease of use and rapid development that is continuously
evolving to cope with the demanding requirements of current
robots. According to our experience, the most challenging
issues that these frameworks must face now are reusabil-
ity, scalability, robustness and adaptability. Although these
issues are common to other application domains, Robotics
incorporates additional difficulties such as real/critical time,
hardware interaction, physical security conditions and human-
robot interaction just to name a few ones. In this paper
we present some advances in the scalability and adaptability
issues. Scalability is the problem of how to manage an increas-
ing number of static components -in repositories- and running
components -in deployed networks with dozens of processes.
Adaptability is the problem of maintaining alive the framework
technology during many years, given the huge number of
dependencies from third party providers that unavoidably end
up forming part of the software.

Marco A. Gutiérrez and P. Bustos are with RoboLab at the University of
Extremadura
E-mail: marcog@unex.es

A. Romero-Garcés and J. Martı́nez are with the University of Málaga

We have approached these problems using Domain Specific
Languages (DSL) based tools and a flexible component model
that can be adapted to new and unforeseen requirements.
Automatically generated code, online syntax checking, auto-
mated components deployment and free generated parsers are
some of the advantages that can be obtained from the use
of these tools. Several DSLs have been designed to facilitate
the work of developers. These languages provide a textual or
graphical high-level definition of the internal structure of the
components, interfaces, configuration parameters, deployment
configurations and of the kinematics of the robots and the
scene. The specific design of each of these languages and their
role in the scalability and adaptability issues will be furtherly
explained in section IV

The availability of a DSL-based definition of the elements
just mentioned opened new unexpected possibilities to tackle
the adaptability problem. Up to now, RoboComp has based
its communications on a third party industrial-quality middle-
ware, Ice, from ZeroC [3]. Although this choice has never
been a problem so far, it is true that sticking to an specific
middleware entails some risks, for example staying out of
some recent technological advances. An interesting solution
to this problem is to have middleware independence in the
framework, meaning that the user can select which commu-
nications middleware will be used in the component. This
feature adds even more flexibility to our framework in terms of
components interconnection and developer abstraction, facili-
tating the survival of the repository across technology changes.
Another strategic decision that we have taken is to create a new
3D robotics simulator. There are several reasons for starting
this gigantic endeavour that are discussed later but, essentially,
we needed total control over the simulator and its interfaces
because we wanted to integrate it as a native component in
the RoboComp architecture. As it will be sketched below, a
simulator component can be used in two ways: externally, as
a regular provider of synthetic reality; and internally, as an
inner-model of the perceived reality. It is this last use and its
role in the new cognitive architecture we are constructing what
has driven us to build the RCIS simulator.

The rest of the paper is organized as follows: Section II
will briefly review the most related frameworks. Section III
gives a quick overview of the general features of RoboComp.
Section IV explains the new DSL technology and its im-
plementation in the life-cycle of component development. In
Section V how middleware independence in RoboComp is
achieved and a case of study are explained. Section VI de-
scribes the intrinsics of the new 3D simulator tool. RoboComp
packaging is explained through section VII. Finally VIII will
provide some conclusions along with some future lines of
work.

40 JOURNAL OF PHYSICAL AGENTS, VOL. 7, NO. 1, JANUARY 2013

II. RELATED WORK

Several frameworks for robotics development are currently
widely used. We will briefly review those most related to our
line of work or that share some of our concerns on scalability
and adaptability.

Robotics Operating System (ROS) [4] is the most famous
and most widely used framework. It contains a wide set of
reusable components most of them including state of the art
solutions to main problems in robotics. Many commercial and
research hardware platforms can directly run on it and use
the available components making it really easy to run state
of the art algorithms with very small time investment. On the
other hand, although it is widely used and it has hundreds
of components, this very same success limits the potential of
adaptation to the challenges mentioned above. Features like
automatic code generation, modifications in the component
model, middleware independence or other technological up-
dates yet to come are difficult to incorporate because they
might imply critical changes in the current kernel technology.
The huge inertia caused by high number of users limit the rate
at which new concepts can be introduced. Moreover, many of
the most interesting libraries that are being developed inside
ROS are also available as standalone packages that are easily
integrable by other frameworks.

SmartSoft [5] is one of the most advanced middlewares in
terms of the Software Engineering technology that it incorpo-
rates. The creators of SmarSoft designed a set of communica-
tion patterns that are at the core of its component model and
that were devised as a key tool for middleware independence.
SmartSoft supports dynamic reconnection of components at
run-time making use of the so called wiring Patterns. This
feature allows the re-wiring of components according to the
perceived context and changing requirements. This framework
also includes advanced tools for Model Driven Software devel-
opment as well as task level abstraction. Currently provides
two reference implementations, one using CORBA [6] and
another one using the Adaptive Communications Environment
(ACE) [7] as the underlying communication infrastructure.

OpenRTM-aist [8] is a Japanese robotics framework de-
signed also using a Model Driven Architecture (MDA [9])
technology. The communication middleware used by Open-
RTM is omniORB, which is an open source CORBA imple-
mentation. It also supports model driven developments for
the design of components and several tools are provided,
such as the RtcTemplate that is the main development tool
used to generate the RT-Components and RTCBuilder that is
a template generator tool for new components. The RTSys-
temEditor is based in the Object Managment Groups (OMG)
Robot Technology Component (RTC) [10] specification and is
used for manipulating the components in a real-time graphical
interface. Some other tools worth mentioning are the RtShell
which includes the commands to interact with the components
and the managers and TtcLink a tool for operating with the
components in real time through a GUI. Recently they have
been also working on some interconnection issues and soon
the components from Open-RTM will be able to talk to ROS.

Fig. 1: Screenshot of the RoboComp DSL Editor while
modifying the CDSL model.

III. ROBOCOMP OVERVIEW

RoboComp is a model-driven, component-oriented frame-
work built around three key elements: a component model, a
communications middleware and a set of tools that facilitates
the writing and maintaining of robotics code. It started in 2005
as a way to create and reuse code written by many different
people and that was meant to be used in many different robots.
The central idea is to define a processing and coding entity
that can be created and maintained largely decoupled from the
rest of the system. These units or components are full fledged
processes when running and occupy its own subdirectory in
the global code repository. They communicate with other
components using a public interface and through an underlying
communications middleware. Building on this generic idea,
RoboComp is now the result of many years of further elabo-
ration and adaptation to our everyday research and engineering
activity and, nevertheless, many more improvements are in the
way now due to the increasing complexity of current robots
and their control and cognitive architectures. The repository
holds now more than one hundred components, along with
classes and tools specifically designed to improve and ease the
robotics software designer experience. It covers functionalities
of different robotics and artificial vision topics mainly through
integration of third party libraries. More detail of the initial
design of robocomp is given in [2].

IV. DOMAIN SPECIFIC LANGUAGES FOR COMPONENT
ORIENTED PROGRAMMING

In order to improve the scalability and adaptability of Robo-
Comp, a major redesign has been undertaken. The complete
software life-cycle of the components has been transformed by
introducing DSL technology under a Model-Driven approach.
In this new design every critical part of the framework is spec-
ified using a Domain Specific Language and the corresponding
transformation tools generate the source code according to the
detailed specification expressed in them. The user now only
needs to add the specific working code in his component.
Figure 1 shows the new DSL Editor. The next five Subsections
describe each of the DSLs that are now part of RoboComp
development model.

GUTIÉRREZ ET AL: PROGRESS IN ROBOCOMP 41

A. CDSL

RoboComp provides both client/server and publish/sub-
scribe communication models. In order to establish commu-
nication, components must perform different operations. For
instance, if a component needs to perform remote calls to other
components, its code will have to: a) include the definition
of the proxy classes corresponding to the interfaces it is
going to connect to; b) read from the configuration file how
to reach the remote component; c) create the proxy object
using the previously read configuration; d) provide the proxy
object to the classes that will be using it. Similar scenarios
exist when providing new interfaces, subscribing or publishing
new topics (see [2] for more details). In RoboComp, this
code was automatically generated by Python scripts when
the component was created for the first time. However, until
the adoption of MDA-based techniques, if the connectivity
of a component changed after its creation -a considerably
common scenario- the code had to be manually modified.
Also, successive changes to the component model required
a cumbersome and error prone work on the Python scripts.

Components became difficult to maintain through all these
situations mainly because their source code depends on these
parameters. In order to solve these problems, we have devel-
oped a DSL to create and modify component properties. This
DSL is called the Component Description Specific Language
(CDSL) and allows users to create and maintain their compo-
nent descriptions from a textual model. CDSL files contain
the basic definition of the structure of the component and
information about communication parameters such as proxies,
the programming language of the component, interfaces and
topics used by the components, the optional support of Qt
graphical interfaces, their dependencies with external classes
and libraries, and an optional SCXML [11] file path for
embedding a state machine in the component.

The properties that are contemplated in CDSL are the
following:

• Component name.
• Interfaces and data types defined in external IDSL files.
• Client/Server communication model: required and pro-

vided interfaces.
• Publish/Subscribe communication model: topics that the

component will publish or subscribe to.
• Graphical interface support.
• State machine support.
• Dependences with external classes and libraries.
• Programming language of the component.

In order to match the CDSL development model, the structure
of RoboComp components has been remodelled. The internal
structure of the components has been divided in two parts: a
generic and a specific part as shown in figure 2. The generic
part contains the logic of interprocess communication, the
general structure of the components such as the main program,
thread pool, source directory structure, documentation rules
and some introspection and self-monitoring capabilities. This
generic functionality is implemented with abstract classes that
are inherited and extended by the user-specific code. Thus, a
component can be divided in two parts by a line separating

Fig. 2: New structure of RoboComp components.

the generic from the specific. The specific component code
is generated by the RoboComp DSL tool only once, but
the generic code is always regenerated when the CDSL is
modified. Proceeding this way, the users are guaranteed that
their specific code will never be deleted or modified and
that, at the same time, they are able to modify any generic
component property. This basic structure is one of the most
important design decisions taken at this stage of RoboComp
development.

B. IDSL

RoboComp initially used the Ice Interface Definition Lan-
guage (Slice by ZeroC [3]) to define component interfaces.
The problem with third party IDLs is that they create an
unnecessary dependency that might be difficult to eliminate,
since the data types and proxies of the middleware tend to
mix with the user code. Moreover, any change in the Slice
language would require modifying the RoboComp interfaces
already defined. To avoid this dependency we developed the
Interface Description Specific Language (IDSL). IDSL was
initially designed as a subset of the Slice features, mainly
data types and definition of remote calls. Now users can define
their own interfaces using the IDSL language which is fully
supported by the RoboComp DSL Editor. These definitions
can be easily and safely translated to a target IDL when
needed.

Currently, IDSL supports the following features:
• Interfaces and topics definition.
• Basic data types, such as integer and real numbers or

strings.
• Enumerated types.
• Custom structures and data types such as sequences and

maps.
• Exceptions.

C. PDSL

The Parameter Definition Specific Language provides a
formal tool for the specification of configuration parameters
that define the runtime behavior of the components. We
have noted that creating configuration parameters and reading
them into the code are one of the main causes of execution

42 JOURNAL OF PHYSICAL AGENTS, VOL. 7, NO. 1, JANUARY 2013

Fig. 3: Screenshot of the RoboComp DSL Editor while
editing a PDSL file.

errors when creating components. With the PDSL, the user
defines a template of configuration parameters that can have a
hierarchical structure -i.e., nested lists-, explicit types, initial
values and valid ranges. This template is used by the DSL
tool to generate specific parsing source code structures with
access control methods that are included in the generic classes
of the target component. Thus, PDSL guides developers in
writing the necessary configuration files in a standardized way
within the framework. Besides the increased expressive power
of the new method to define complex set of parameters, the
most remarkable improvement is the reduction in the number
of programming and execution errors due to misreading or
misinterpreting the values assigned to the parameters before
deploying the component. Figure 3 shows a capture of Robo-
Comp DSL editor while editing a PDSL file that defines the
parameters -nested- of a bus of motors.

D. DDSL

Components are independently executed programs that in-
teract with each other. When using a component-oriented
robotics framework, a robotic software system is composed of
several interconnected components, representing a component
network. These components can be executed manually, but
as the number of components grows, it becomes increasingly
difficult to manage them appropriately. Robots of middle
complexity -e.g., mobile robots equipped with stereo heads-
and high complexity robots -e.g., mobile manipulators with ex-
pressive heads- are controlled by graphs containing dozens of
components running on several computers. The configuration
and management of these networks of processes suggest the
combination of a graphical tool and a representation language.
The Deployment Description Specific Language was devel-
oped as the underlying language to make this management
task easier.

With DDSL users are able to describe which components
will be used, where they should be executed and which config-
uration to use. This makes it possible to automatically deploy
RoboComp components in a certain computer or computer
network. DDSL has been designed to simplify the system

deployment and integration.
In order to define a component network, the following

parameters have to be specified for each component:
• Component: the CDSL file path of the component to

execute.
• Path to the executable file of the component.
• IP address and port.
• Path to the configuration file.
With the information in this file, all component dependences

can be precomputed. Thus, the DSL editor can warn users of
basic configuration errors while editing the file and prior to
the actual deployment.

E. InnerModelDSL

InnerModelDSL is an XML-based Domain Specific lan-
guage specifically designed for describing the kinematics
of robots. InnerModelDSL files are parsed by a C++ class
called InnerModel which is widely used by components to
maintain an updated representation of the robot and to compute
transformation between frames of reference. InnerModelDSL
has been considerably extended in the last years. Despite it was
initially designed only to define kinematic descriptions, several
elements were incrementally added to increment its expressive
power. Now, sensors can be specified and 3D meshes can be
assigned to kinematic links providing the volumes necessary
to compute collisions. Also, the scene around the robot can be
also defined using volumetric primitives. As a side effect, this
updated description of the scene can be used with a 3D scene
graph engine -OpenSceneGraph- to visualize the robot in its
environment at any time and in any component that includes
the corresponding libraries, which is automatically done from
the PDSL.

After parsing an InnerModelDSL file, a transformation tree
is created in memory that holds all the nodes defined in the
kinematic description. This tree is managed inside a class
that offers an interface to manipulate and query its state it
at runtime. Listing 1 shows an implementation of a tree using
the innerModelDSL. The attributes (tx, ty, tz) correspond to
the translation vector (x, y, z) and the attributes (rx, ry, rz)
correspond to the rotation angles (α, β, γ). If any of the
attributes is missing InnerModel assumes they are 0. Cameras
and other sensors can be included in the model using specific
tags.

1 <innerModel>
2 <t r a n s f o r m i d =” wor ld”>
3 <t r a n s f o r m i d =” t a r g e t ” />
4 <t r a n s f o r m i d =” r o b o t ”>
5 < t r a n s l a t i o n i d =” head ” y =”1002” z

=”−120”>
6 < t r a n s l a t i o n i d =” cameraPose ” x

=”0” y =”1002”
7 <camera i d =” camera ” wid th

=”640” h e i g h t =”480”
8 </ t r a n s l a t i o n >
9 </ t r a n s l a t i o n >

10 < t r a n s l a t i o n i d =” s h o u l d e r P o s e ” y
=”597” z=”−23”>

11 < r o t a t i o n i d =” s h o u l d e r ”>
12 < t r a n s l a t i o n i d =” elbowPose ”

z=”300”>
13 < r o t a t i o n i d =” elbow”>

GUTIÉRREZ ET AL: PROGRESS IN ROBOCOMP 43

14 < t r a n s l a t i o n i d =”
hand ” z =”120”
/>

15 </ r o t a t i o n >
16 </ t r a n s l a t i o n >
17 </ r o t a t i o n >
18 </ t r a n s l a t i o n >
19 </ t r a n s f o r m>
20 </ t r a n s f o r m>
21 </ t r a n s f o r m>
22 </ innerModel>

Listing 1: Example of a tree defined using the innerModel
DSL

F. Experiment: DSL benefits on common developers tasks

An experiment has been conducted in order to provide
empirical evidences supporting the benefits of the usage of
Domain Specific Languages and the related tools that have
been developed. Five of the most common repetitive tasks
that developers usally perform when developing and managing
robotics software have been selected-. Particularly developers
wheres asked to make the following operations over existing
components:

• Deploy a small component network
• Include a new library and a class in a project
• A new method on a previously developed interface
• Make a component provide a new interface
• Add a new proxy for a given interface.
Experiments have been performed twice, first using the

developed DSL tools and then, without any of these tools.
Two main metrics have been considered, the number of lines
of code written and the time spent doing the specific task. We
have tested it with twelve robotics developers with a previous
basic knowledge of the RoboComp Framework and the related
DSLS. Measurement data is represented as boxplots containing
all measurements ranging between the first and third quartiles.
The location of the median of the measurements is indicated
by a red line crossing the rectangle vertically. Measurements
outside the box are considered outliers and are drawn using
green diamonds.

Figure 4 shows the results regarding the time spent in the
experiments. It is worth mentioning that the only time taken
into account was the one in which the subject was typing
code, not thinking. Since users need less time to think when
using DSLs (i.e., there is no need to think which code pieces
should they change) this plays against the use of DSLs. In spite
of this, it can be seen how using the DSL approach shorter
times were achieved for all of the experiments performed.
Figure 5 shows the results regarding the lines of code written
while performing the experiments. As happened with time,
the figure shows that, using the DSL approach, fewer lines of
code were written for all of the experiments performed. This is
not a surprise, since small changes in the DSLs might involve
many changes in the generated code. The only experiment in
which no considerable improvements were achieved (only a
few seconds) was the experiment number 3. This is because
the framework was already making use of CMake features for
the operations involved in the experiment, so the initial number
of lines to modify was already low.

Fig. 4: Boxplots of the time spent writting for each
experiment.

Fig. 5: Boxplots of the lines of code written for each
experiment.

V. MIDDLEWARE INDEPENDENCE

One of the main objectives in the robotics field has been the
creation of libraries and object-oriented frameworks for build-
ing robotics software, focusing on reusability and software
evolution. In this application domain, the complex tasks per-
formed by a robot are divided into distributed processes which
communicate using existing middleware (CORBA, Ice, or
DDS [12]) or ad-hoc mechanisms (such as ROS or Player [13])
for communications. These mechanisms allow developers to
create networked applications in a platform and language-
independent manner which also hide low-level communication
details. However, if the selection of a specific middleware (or
an ad-hoc implementation) has influenced the whole archi-
tecture of the distributed system (in this case the RoboComp
framework), it could compromise the capabilities of the whole
robotic system to adapt it to new requirements, such as real-
time or quality-of-service (QoS) properties. From its inception,

44 JOURNAL OF PHYSICAL AGENTS, VOL. 7, NO. 1, JANUARY 2013

RoboComp components were strongly coupled with Ice, using
not only its communication model (based on remote method
invocations or RMI [14]) but also part of its proprietary API in
the main structure of each component. Nevertheless, Ice is not
suitable for real-time scenarios and different communication
models and, therefore, we have designed a mechanism to make
RoboComp a middleware-independent robotics framework.
With this new redesign it is now possible for developers to
select the appropriate communication model for exchange data
among components without any binding to a specific middle-
ware until code generation. It is worth noting that existing
Ice-based components in Robocomp can be now transformed
into new middleware-independent ones without changes in
the user-defined business logic of the component. In order
to obtain a middleware-independent framework, RoboComp’s
DSLs were improved with new semantics when defining
interfaces, which now add three communication patterns to
describe their operations:

• command. One to one communication. Operations with-
out output/return values.

• query. One to one communication. Operations with out-
put/return values.

• publish. One to many communication. Operations without
output/return values.

These patterns are heavily influenced by the ones described
in [15] and represent the two communication models more
used in networked applications: the client/server (command
and query) and the publish/subscribe (publish) model. com-
mand and query patterns encapsulates the Remote Method
Invocation paradigm in order to perform one-way or two-way
remote calls and publish wraps a mechanism to publish data
to multiple subscribers. Two RoboComp DSLs are used to
select the communication model and the operation patterns.
The CDSL helps developers to select the client/server or
the publish/subscribe communication model for a specific
interface (selecting request, implements, publishes or sub-
scribesTo). The IDSL has been changed in order to provide
a middleware-independent interface using the communication
patterns. Listing 2 shows the definition of the Speech interface
using the communication patterns. When a command or a
publish operation is defined, only an input parameter (a data
request structure) is needed. If a query operation is described,
the operation must have an input request parameter and
an output response parameter. Data request parameters will
contain all the information that will be sent or published to
other components and the data response will contain the result
of a query operation. It is worth noting that the code generated
from an IDSL will depend on the middleware that will be used
in the component.
1 module RoboCompSpeech{
2 s t r u c t d a t a s a y i n {
3 s t r i n g t e x t ;
4 boo l o v e r r i d e ;
5 } ;
6 s t r u c t d a t a r e s p o n s e {
7 boo l r e s p ;
8 } ;
9 s t r u c t d a t a e n a b l e S y n c h r o n i z a t i o n i n {

10 boo l v a l u e ;
11 } ;

12 i n t e r f a c e Speech{
13 [que ry] vo id say (d a t a s a y i n pin , o u t

d a t a r e s p o n s e pou t) ;
14 [que ry] vo id i sBu sy (o u t d a t a r e s p o n s e p) ;
15 [command] vo id e n a b l e S y n c h r o n i z a t i o n (

d a t a e n a b l e S y n c h r o n i z a t i o n i n p) ;
16 } ;
17 } ;

Listing 2: Speech.idsl

Once the component and the interface have been described,
the user will select a middleware during the source code gen-
eration step for each component. Robocomp components share
all the same code structure with a generic and a specific part,
independently of the middleware selected. If the component
implements an interface, the user only needs to implement
the operations defined in the IDSL file in the SpecificWorker
class of the component. On the other hand, if the component
requires an interface, then the communication patterns must
be used. Listing 3 depicts the code of a component that uses
the communication patterns to perform the operations defined
in the Speech interface.

1 void S p e c i f i c W o r k e r : : compute () {
2 . . .
3 RoboCompData<d a t a r e s p o n s e> r e s p b u s y ;
4 speechcomm−>query<i sBusy >(r e s p b u s y) ;
5 i f (r e sp busy−>r e s p != t rue) {
6 RoboCompData<d a t a s a y i n> r e q s a y ;
7 req say−>t e x t = ” H e l l o ” ;
8 req say−>o v e r r i d e = t rue ;
9 RoboCompData<d a t a r e s p o n s e> r e s p s a y ;

10 speechcomm−>query<say >(r eq say , r e s p s a y) ;
11 . . .
12 }
13 . . .
14 }

Listing 3: Extract of code using the query communication
pattern

The implementation of the communication patterns is also
generated from the CDSLs automatically depending on the
middleware selected. For each proxy or publisher, a high-level
communication pattern class is generated. Internally, these
classes wrap up the proxies and publishers of the underlying
middleware. An instance method of the specific communi-
cation pattern will be used to invoke an operation, where
its arguments (request/response data structure variables) are
used to identify the exact operation inside the communication
pattern object (for instance, lines 4 and 10 in listing 3).

A. A case of study: integrating Nerve in RoboComp

1) Nerve overview: As a case of study, we have extended
RoboComp to support Nerve, a lightweight C++ middleware
for networked robotics [16]. Nerve has been designed to
guarantee the scalability and quality-of-service(QoS) of real-
time and critical components. It uses several frameworks pro-
vided by ACE to implement communication policies between
local components which execute as threads, using message
queues and zero-copy buffering. Nerve also makes use of the
OMG’s Data Distribution Service for real-time systems(DDS)
standard, which is a completely decoupled publish/subscribe
communication model with a wide set of QoS for distributed

GUTIÉRREZ ET AL: PROGRESS IN ROBOCOMP 45

components. Although Nerve relies on the OpenSpliceDDS
open source implementation of DDS [17], it is worth noting
that different DDS products could be integrated in a seamless
way.

Data in Nerve are defined as topics, which is a concept in-
herited from DDS. Topics are data structures (types) identified
by a name and an associated quality of service. These QoS
policies may define reliability, missed deadline or resource
limits among others, and must be applied carefully to obtain
the best performance in a specific deployment. As in other
OMG specifications, the definition of topic types is done using
an IDL (in this case, a subset of the CORBA IDL), which
can be compiled to primitives and data structures for specific
programming languages.

Nerve has been designed to choose the fastest communica-
tion mechanism between components executing parallel tasks,
which depends on the way these tasks are deployed on the
final robotics system. For instance, inter-thread communication
modes are faster than inter-process communication ones (we
obtain better data transfer rates) whether components are
executed within the same physical node. In short, the main
features of Nerve include:

• The encapsulation of critical tasks as platform-
independent services that can be executed as threads or
processes at deployment time.

• The adoption of an asynchronous execution model, in
which services react to events available from their own
event queue.

• The internal selection of the fastest mechanism for
communications: zero-copy buffering for threads, shared
memory for processes running within a node and reliable
multicast for networked processes. Users will be unaware
of the selected mechanism.

• The adoption of a standard protocol in the distributed
case by adopting the OMG’s Data Distributed Service
recommendation.

Although Nerve is mainly based on the publish/subscribe
communication model for distributed communications, re-
cently, we have also included a mechanism that emulate
Remote Method Invocations, it being now possible to fulfill
the communication requirements in Robocomp usig its com-
munication patterns.

2) Extending the automatic code generation process for
Nerve in RoboComp: In order to use Nerve in RoboComp,
we have extended the automatic code generation process for
CDSL, IDSL and PDSL: a) Nerve IDL files can be generated
with the appropriate topics types that are obtained from the
parameters of the operations defined in the IDSLs, b) from
CDSLs is also possible to generate the component code with
all the files that wrap the communication details of Nerve,
hiding them from developers, and c) PDSL language can be
also used to generate the appropriate code for parameters and
their initialization values.

3) Generating Nerve-based components: Figure 6 shows
the generation process of a RoboComp component using the
RoboComp DSL Editor tool. Shaded boxes represent files
that are middleware independent. To clarify the code gener-
ation process, both middleware (Ice and Nerve) integrated in

Fig. 6: Screenshot of the RoboComp Generation Process.
Shaded boxes indicate those parts that are modified by the

user and are middleware independent

RoboComp are depicted. Middleware must be selected before
the component is created from CDSL. Then, the component
skeleton (with specific, generic parts and IDL files) are gen-
erated automatically. It is worth noting that the specific part
of a component is middleware independent because it is only
created the first time the component is generated, whilst the
other files (generic part, IDLs, etc) are always overwritten
after changes and modifications. When an existing Nerve-
based component is going to be deployed in an Ice-based
components system, developers must regenerate the Nerve-
based component first by repeating the above process, although
selecting Ice as its target middleware. From a developer’s point
of view, no further changes in the source code of the existing
component are needed.

VI. ROBOCOMP INNERMODEL SIMULATOR

As stated in the Introduction, one of the main efforts taken
recently in RoboComp has been the design and construction
of a robotics simulator. This effort has been partially mitigated
by the reuse of the InnerModelDSL elements and of the
OpenSceneGraph visualization technology that was already
employed for monitoring and debugging purposes. Combining
these components along with a careful design has taken us to
the RoboComp Innermodel Simulator (RCIS), a 3D simulator.
The most important feature of this simulator is that it is also
a native RoboComp component. Being so, it can implement
all the interfaces of the existing components in the hardware
abstraction layer, i.e. cameras, lasers, kinect, motors, bumpers,
ultrasound, tactile and any others that may come in the future.
The rest of the components in a certain deployment graph can
communicate to these interfaces as if they were the original
components, facilitating enormously the development cycle of
complex algorithms. Figure 7 shows a screenshot of RCIS.

Having complete control over the simulator kernel allows
us to adapt it to our needs. For example, it is very useful to be
able to activate or deactivate the physics engine or to modify
the level of noise in the simulated sensors and actuators,
Also, we plan to introduce semi-autonomous humans in the
system to simulate and develop HR interaction behaviors. We
should be able to, for example, connect the OpenNI tracking
software to a synthetic RGBD sensor located in the robot

46 JOURNAL OF PHYSICAL AGENTS, VOL. 7, NO. 1, JANUARY 2013

Fig. 7: Screenshot of the RoboComp InnerModel Simulator
with a model of the robot Locky in RoboLab’s Living Lab.

inside the simulator and track the evolution of the synthetic
human figure.As a side effect of these developments we have
built InnerModelViewer, a graphic editor of InnerModelDSL
files. This tool has proven of great utility in the modelling of
new robots and scenes using meshes and partial models created
in other modelling programs such as Blender. Finally, a last
feature of RCIS that is hard to find in other simulators is that it
provides a flexible interface to control objects on the fly. This
interface is implemented as a RoboComp interface -an IDSL-
so it can be accessed from any other component. These com-
ponents can create and transform elements in the scene graph.
As a consequence, RCIS may be used as an internal modelling
and simulation system. This use of a full-fledged simulator as
a cognitive module has been proposed before in theories of
consciousness [18] and we plan to include it as the central
element of a new cognitive architecture being developed on top
of RoboComp, called RoboCog. The simulation capabilities
of RCIS can be used internally to predict the outcome of the
robot actions on its represented environment. The robot itself
would occupy the central place in the simulator and the objects
and agents around it would be modelled and updated by the
robot’s perceptive system. Sensor models in the original RCIS
now can be used to generate the sensorial data that the model
of the robot would perceive when interacting with its modelled
environment. Furthermore, the robot’s self-model could be
temporarily cloned to execute and evaluate plans computed
by an opportunistic task-planner. The unfolding of alternative
courses of action in the internal simulator and the interleaved
execution of the partially validated plan creating a real course
of action, is part of our current ongoing research on RoboCog.

VII. PACKAGING ROBOCOMP

RoboComp is a framework designed for robotics software
developers but might also be used by final software users. Cur-
rently, the standard workflow involves downloading the entire
source code from the svn repository, manually installing re-
quired dependencies, compiling the components/tools needed
and running them, usually along with some new code or
components written by the user. Most of roboticists work
implies the use of several common unmodified components
directly downloaded from the repository and compiled without

Fig. 8: Distribution of RoboComp in Debian packages

any modifications. Because of this, with the exception of some
work on building one component from scratch or adding some
small changes to an existing one, the rest of the components
source code usually remains unchanged. Final users might also
be interested in taking a look into RoboComp as a tool to make
a robot move without any development involved or just to test
some devices. In this cases, dealing with the entire framework
source code becomes nothing but a handicap. In order to ease
these situtations, a new way of distributing RoboComp has
been introduced. The whole framework has been broken down
into different parts, compiled and packaged for easy distri-
bution and usage. To this end, the widely extended Debian
packages format has been used, since most of current Linux
distributions accept them as a binaries installation source.

In order to allow a smooth coexistence of binaries and
sources, RoboComp will use two main locations: the de-
fault installation directory placed on /opt/robocomp ,
and a working space placed under the user home directory
∼/RC_worckspace . Both of them will maintain a similar
structure with the only difference that the installation directory
will not contain sources. Instead, any needed sources should
be manually placed by the developer under the workspace
directory for any modifications. When the work on user com-
ponents is finished they can be installed by running #make
install as superuser, and thus placed under the installation
directory so they can be used as if they had been installed from
packages. When a component is installed its binaries and other
relevant non-source files, such as default configuration, are
placed under the installation directory and the PATH variable
is updated in order to make them executables as regular
commands.

Figure 8 shows the packages that came out of the Robo-
Comp breakdown and packaging process. First, there is one
package that contains the whole documentation of the frame-
work. Then, for the tools, a package has been created for
each of them, so you can choose the ones you need and,
at the same time, you can have them all by just installing
the virtual package robocomp-tools. Components packages
work in a similar way. They came also in individual packages

GUTIÉRREZ ET AL: PROGRESS IN ROBOCOMP 47

and Robocomp-Components is a virtual package containing
all stable components. Some other group of components are
also available through virtual packages like robocomp-hal
or robocomp-vision. The package robocomp-classes contains
classes needed for RoboComp development. With this pack-
aging approach RoboComp becomes more easily distributable
and better usable for roboticists not interested in the underpin-
nings of the supporting framework. It makes installation easy
and fast since users do not have to take care of dependencies,
compilation and environment variables.

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper we have described recent progress with the
RoboComp framework. We have introduced the new model
driven approach based on DSLs recently implemented that
includes: a) the CDSL used to describe general component
properties; b) the IDSL used to describe component interfaces;
c) the DDSL used to describe the deployment plan of local
and networked components; d) the PDSL used to describe
templates of component parameters and e) the InnerModelDSL
used to describe robot kinematics, sensors and scenes. These
new tools have been integrated in an Eclipse-based syntax-
aware editor that allows users to create and maintain their
components reducing development times. Users can focus on
the implementation of the algorithms instead of wasting time
on low-level details of the framework and the middleware.
Moreover, RoboComp’s components structure allows devel-
opers to create and modify existing components, interfaces
and parameters without interfering with existing parts of the
component, improving the lifecycle of the whole system.

Until now, the dependence of RoboComp in Ice has pre-
vented developers from adapting components to new require-
ments such as real-time or a specific QoS. Therefore, we have
also improved the DSLs to make RoboComp a middleware-
independent robotics framework. This way, three commu-
nication patterns (command, query and publish) (adapted
from [15]) are now used to specify the operation semantics
and to abstract users about the middleware to use at run-time.
Thus, we have proved this solution integrating RoboComp
with Nerve, a novel middleware which provides our framework
with real-time and QoS features.

The RoboComp InnerModel Simulator along with the Iner-
ModelDSL constitutes a strong alternative to those currently
available. Moreover the run-time interface of the simulator
allows the developer to use this tool for other purposes such
as a cognitive simulation tool. All these new improvements
constitute a great advance of RoboComp in integrating state
of the art Software Engeneering methods that will guarantee
increased levels of scalability and adaptability in the future.

B. Future Work

A future need for the DSLs is the ability to represent
hierarchical representation of groups of components. In the
future one component should automatically be created to act
as a proxy for all incoming communications to the group.
This rearrangement will make a group of components appear

as a single one to the rest, at the cost of a certain increase
in communication delay. We believe this additional level
of abstraction is necessary to handle hundred of running
components, a common situation in future complex robotic
scenarios.

The middleware independence opens the possibility for
RoboComp components to communicate with components
in other frameworks. Since all communication code used in
the user programmed part of the components is middleware
independent, it should be possible to specify in the CDSL
that a certain required proxy comes from a, for instance, ROS
component. There is now work in progress towards model-
based interconnection of different frameworks.

Finally, the new RobCog architecture that will use RCIS
as its internal modelling and simulation cognitive module has
also started initial developments and we plan to run soon the
first tests in the new humanoid social robot Loki, built in close
collaboration with the University of Castilla-La Mancha.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Ministerio de Ciencia e Innovación TIN2011-27512-C05-04
and AIB2010PT-00149, and by the Junta de Extremadura
projects IB10062.

REFERENCES

[1] J. He, X. Li and Z. Liu. “Component-based Software Engineering: the
Need to Link Methods and their Theories.” Proc. of ICTAC 2005, Lecture
Notes in Computer Science 3722, pp. 70-95, 2005.

[2] L.J. Manso, P. Bachiller, P. Bustos, P. Nuñez, R. Cintas and L. Calderita.
“RoboComp: a Tool-based Robotics Framework”. In Proc. of Int. Conf.
on Simulation, Modeling and Programming for Autonomous Robots
(SIMPAR). Pages: 251-262. 2010.

[3] M. Henning and M. Spruiell. “Distributed Programming with Ice”, ZeroC.
2009.

[4] ROS open source community. “ROS: The meta-operating system for
robots.” Available at http://ros.org 2011.

[5] C. Schlegel, A. Steck, D. Brugali and A. Knoll “Design Abstraction and
Proccesses in Robotics: From Code-Driven to Model-Driven Engineering”
In 2nd International Conference on Simulation, Modeling and Program-
ming for Autonomous Robots (SIMPAR) 2010.

[6] R. W. Claus, N. Wang, D. C. Schmidt and C. ORyan, “Overview of the
CORBA Component Model”. Component Based Software Engineering
Putting the Pieces Together Pages: 1-16. 2011.

[7] “Adaptive Communications Environment”
http://www.cs.wustl.edu/∼schmidt/ACE-overview.html

[8] N. Ando, S. Kurihara, G. Biggs, T. Sakamoto and H. Nakamoto. “Soft-
ware Deployment Infrastructure for Component Based RT-Systems.” In
Journal of Robotics and Mechatronics. Vol.23, no.3, pp. 350-359. 2011.

[9] A. W. Brown “Model Driven Arquitecture: Principles and practice”
Sofware and systems modeling Pages: 314-327. 2004.

[10] Object Management Groups Robotic Technology component standard,
version 1.0. Available at http://www.omg.org/spec/RTC/1.0/

[11] D. C. Burnett, J. Carter, J. Barnett, M. Bodell, R. J. Auburn and
R. Alkolkar “State Chart XML (SCXML): State Machine Notation for
Control Abstraction”

[12] Object Management Group: Data Distribution Service for Real-time
Systems (DDS), version 1.2, 2007.

[13] Gerkey, B.P., Vaughan, R.T., Howard, A. “The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems.” In Proceedings
of the 11th International Conference on Advanced Robotics. pp. 317-323,
2003.

[14] Martı́nez J, Romero-Garcés A, Manso L, Bustos P “Improving a robotics
framework with real-time and highperformance features.” Simulation,
Modeling, and Programming for Autonomous Robots, Lecture Notes in
Computer Science, vol. 6472, Springer, 2010; 263274.

48 JOURNAL OF PHYSICAL AGENTS, VOL. 7, NO. 1, JANUARY 2013

[15] Schlegel, C.: “Communication Patterns as Key Towards Component
Interoperability” In Software Engineering for Experimental Robotics.
STAR Series, vol. 30, pp.183210 (Springer, Heidelberg) 2007.

[16] Cruz, J. M., Romero-Garcés, A., Rubio, J. P. B., Robles, R. M. and
Rubio, A. B., “A DDS-based middleware for quality-of-service and high-
performance networked robotics.” Concurrency Computat.: Pract. Exper..

doi: 10.1002/cpe.2816 2012.
[17] PrismTech. OpenSplice DDS. Available at http://www.opensplice.com

2011.
[18] H, Owen, and R. Goodman. “Robots with internal models Journal of

Consciousness Studies” 10 (4): 1-45. 2003.

