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Abstract. Navigation is one of the crucial skills autonomous robots need
to perform daily tasks, and many of the rest depend on it. In this paper, we
argue that this dependence goes both ways in advanced social autonomous
robots. Manipulation, perception, and most importantly human-robot
interaction are some of the skills in which navigation might rely on. This
paper is focused on the dependence on human-robot interaction and uses
two particular scenarios of growing complexity as an example: asking
for collaboration to enter a room and asking for permission to navigate
between two people which are talking. In the first scenario, the person
physically blocks the path to the adjacent room, so it would be impossible
for the robot to navigate to such room. Even though in the second scenario
the people talking do not block the path to the other room, from a social
point of view, interrupting an ongoing conversation without noticing is
undesirable. In this paper we propose a navigation planning domain and
a set of software agents which allow the robot to navigate in crowded
environments in a socially acceptable way, asking for cooperation or
permission when necessary. The paper provides quantitative experimental
results including social navigation metrics and the results of a Likert-scale
satisfaction questionnaire.

1 Introduction

A future where humans and robots coexist appears to be getting increasingly
close. In fact, some applications in which social robots help humans in their
daily tasks already exist. For instance, social robots in therapy or education have
proven feasible and successful in use[1]. Other social robots are being developed
to provide the elderly with assistance at home or in nursing homes, and even to
provide health specialists with help during their working hours. Many of these
applications for robots require them to work alongside people as capable and
socially smart partners.

In these scenarios, navigation is one of the most important tasks social robots
need to perform. In fact, mapping, localisation and path planning, which are the
foundations of robot navigation, have been among the most significant research
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lines for years. The field of social navigation is experiencing a remarkable growth
because in environments with humans where some of the elements (objects and
people) are dynamic, humans’ comfortability, safety and intentions must be
prioritised. Social navigation adapts robot navigation to scenarios with people
by following social norms. For instance, robots should avoid getting to close to
people or disturbing people who are not willing to interact with them.

In our previous work [2], a social path planner for modelling robot navigation
in populated environments was proposed. In [3] and [4] an algorithm for human-
centred navigation where a novel method for clustering groups of people in
the robot’s surrounding was used. According to these clusters, a social map
was defined. Other works such as [5] also generate similar maps. Unfortunately,
sometimes avoiding disturbing people while navigating makes impossible for the
robot to reach its desired destination (e.g., when a person blocks a door, or when
the only path would require the robot to navigate between people which are
interacting). Current algorithms have serious problems to find solutions, and
frequently social robots cannot find a way to reach their destinations. The paper
at hand extends previous works [3,4] and focuses on a social planning strategy
for situations where people block the path and there are no alternative paths.

(a) Office environment composed of
two rooms (b) Narrow corridor

Fig. 1: Examples of scenarios in which robots have navigate using social rules.
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Consider the cases illustrated in Fig. 1. In both images the robot must navigate
in human-populated scenarios from its initial position to a target position, and
there are blocked areas in the routes planned. In Fig. 1a the human next to the
door blocks the path; in a similar scenario, in Fig. 1b two people are interacting
and the social map generated by our clustering algorithm also blocks the robot
path. As the main contribution of this paper, we propose a social navigation
planning domain and a set of software agents which allow robots to navigate in
human-populated environments in a socially acceptable way, asking for permission
or cooperation when necessary.

This paper is organized as follows: after discussing known approaches to
human-centered navigation for robot navigation in Section 2, Section 3 presents
the cognitive architecture CORTEX, which consists of a network of software agents
that allows executing complex tasks involving skills such as human perception
or robot navigation. In Section 4 we describe the proposed navigation planning
domain. Section 5 presents the experimental results. Section 6 describes the
conclusions drawn and future work.

2 Background

The debate between the use of grid-based vs. topological maps [6] has existed,
including on whether or not using maps at all. While robots have been able to
perform rather complex tasks without representations of any kind, when robots
are supposed to perform them efficiently, map-less approaches becomes hard to
support. Considerably rich and structured world models, with a higher semantic
load than two-dimensional grids became frequently necessary to use in these
cases. Suggesting scenarios in which a structured representation is necessary is
not hard, just consider a dialogue between a robot and a person; interpreting
human commands such as “pick up the red ball and bring it to my sister” is a
good example. The robot would require information about kinship and the balls
that they have seen (there might be more than one). This kind of information
is required for almost all HRI skill. Social mapping, was introduced in [5]. It
deals with the problem of human-aware robot navigation and considers factors
like human comfort, sociability, predictability, safety and naturalness [7]. More
recently, the concept of behavioral mapping has been introduced in [8], where the
authors extend social mapping to a behavioral model acting as a mediator that
facilitates seamless cooperation among the humans.

Robot navigation in crowded environments has been extensively studied
in the last years and several theories and methods have been proposed since
then. Particularly interesting reviews have been presented in [7,9] and more
recently [10]. Classic social navigation paradigms are based on using well-known
navigation algorithms, and therefore adding social conventions and/or social
constraints. Under this prism, different works such as [11,12], have shown that the
same proxemic zones that exist in human-human interaction can also be applied
to human-robot interaction scenarios. A broad survey and discussion regarding
the social concepts of proxemics theory applied in the context of human-aware
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autonomous navigation was presented in [9]. A proxemic-based adaptive spatial
density function was defined for clustering groups of people and define forbidden
spaces in [3].

As the number of skills robots have increases human-robot collaboration
becomes more feasible. In [13], the requirements for effective human-robot collab-
oration in interactive navigation scenarios are listed. Additionally, authors present
three different human-robot collaborative planners. However, they only focus
on secure navigation and not on HRI. Other works such as [14], anticipate the
human trajectory in order to update social constraints during robot navigation.
Similar works are presented in [15]. Again, authors do not take into account
interaction with people for robot navigation. Planning for HRI has been used in
manipulation tasks [16] and task allocation in collaborative industrial assembly
processes. However, there are no works where HRI has been used to improve
robot navigation in crowed environment using social conventions. This paper
introduces a planning domain for social navigation where HRI is crucial for
solving real situations where the robot’s path is blocked due to social limitations.
The goal is for the robot to execute actions that optimise social navigation and
human satisfaction.

3 Cognitive Architecture for social navigation

To properly understand the proposal at hand it is necessary to familiarise with
CORTEX, the cognitive architecture used [17]. Social robotics systems are getting
more and more complex: different robotic skills are needed in order to achieve
the tasks that robots are currently expected to do. The robotics cognitive archi-
tecture CORTEX is defined structurally as a network of cooperative software
agents connected through a shared representation (see Fig. 2). This shared rep-
resentation was defined in [17], as ”a directed multi-labelled graph where nodes
represent symbolic or geometric entities and edges represent symbolic or geometric
relationships”.

In the proposal of a flexible and adaptive spatial density function for social
navigation, different CORTEX agents are involved. First, in the higher layer of
the architecture the robot must have the capability of detecting objects in the
path and updating the symbolic model accordingly. Additionally, the skill of
detecting humans is also mandatory because robots need to know about humans
to get commands, avoid collisions and provide feedback. The final, and most
important agent for social navigation, is the one implementing the navigation
algorithms that allows robots to navigate from a point to another in a secure
and social manner (implementation of the path-planning, localization and SLAM
algorithms, among other).

3.1 Deep State Representation

The concept of deep representations was initially described by Beetz et al. [18]
and it advocates the integrated representation of robot’s knowledge at various
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Fig. 2: Diagram of CORTEX with the main software agents involved in this work.
The shared representation of the environment is represented in the centre.

levels of abstraction in a unique, articulated structure such as a graph. Based on
this concept, a new shared representation, Deep State Representation (DSR), to
hold the robot’s belief as a combination of symbolic and geometric information,
is proposed in [17]. This new structure represents knowledge about the robot
itself and the world around it in a flexible and scalable way.

3.2 Agents

An agent within CORTEX is defined as a computational entity in charge of
a well-defined functionality, whether it be reactive, deliberative of hybrid, that
interacts with other agents inside a well-defined framework, to enact a larger
system. In CORTEX, agents define the classic functionalities or skills of cognitive
robotics architectures, such as navigation, manipulation, person perception, object
perception, dialogue, reasoning, planning, symbolic learning or executing. These
agents operate in a goal-oriented regime and their goals can come from outside
through the agent interface, and can also be part of the agent normal operation.
Next, a description of the main software agents needed for social navigation is
shown:

Human detection and representation The person detector agent responsible
for detecting and tracking the people in front of the robot. Humans do not usually
want their personal space being invaded by robots. The presence of humans in
the robots’ path or in their environment may determine changes in the navigation
route in order to make it socially acceptable. The person detector agent acquires
the information using an RGBD sensor. For each detected person the agent
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inserts in the DSR the pose of its torso, its upper limbs, and the head. The lower
limbs are ignored because they do not provide as much social information as the
head, the upper limbs and the torso do [17]. The torso is used to avoid entering
the personal space of humans and as an indicator of the possible directions in
which they might walk.

Human-Robot Interaction The conversation agent performs speech-based
human-robot interaction. In social environments, HRI provides tools to the robot
and/or human to communicate and collaborate. Therefore, this agent is used
to include information in the model when humans tell robots about unknown
objects and to properly acquire commands. Automatic Speech Recognition and
Text-to-Speech algorithms allow robot to send and receive information to/from
humans during its social navigation.

Executive The Executive is responsible for computing plans to achieve the
current mission, managing the changes made to the DSR by the agents as a result
of their interaction with the world, and monitoring the execution of the plan.
The active agents collaborate executing the actions in the plan steps as long
as they consider them valid (it must be taken into account that agents might
have a reactive part). Each time a structural change is included in the model,
the Executive uses the domain knowledge, the current model, the target and the
previous plan to update the current plan accordingly. The Executive agent is
able use different planners. Currently AGGL [19] and PDDL-based [20] planners
are supported.

Social Navigation Navigation is in charge of performing local navigation,
complying with social rules and including the location of the robot in the DSR.
Global path planning is performed by the symbolic planner used by the executive.

The social navigation algorithm implemented is an evolution of the work
presented in [3]. Currently, the Dijkstra algorithm is used to determine the
shortest path between the position of the robot and its target, and the elastic
band algorithm [21] is used to optimize the trajectory.

The robot calculates the initial trajectory based on a free space graph formed
by occupied and free points. Each point has a social cost that represents how
inconvenient it is for humans to see the robot go through each point. This cost
is used to weight the edges of the graph. The cost of a path is the sum of the
costs of the points that compose it. The navigation algorithm uses the Dijkstra
algorithm to find the shortest route between the points of the graph, based on the
cost of the path. Once the path is computed, the robot optimizes the trajectory
using the elastic bands algorithm, which consists in the calculation of attraction
and repulsion forces to get the robot away from the obstacles on the road.

In environments with humans, the robot creates a social map based on the
description of the personal space of the humans present. Three social zones have
been defined around the person: intimate zone, personal zone and social zone.
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These spaces were introduced in [22]. The free space graph is adapted to these
zones by modifying the costs of the points contained in said areas. By increasing
the cost of the personal and social zones, robots will try to avoid these areas in
the planning of the shortest route. The intimate zone is considered a forbidden
setting as occupied the points of the graph contained in that area. Fig. 3 shows
a free space graph and the defined zones, characterized by asymmetric Gaussian
curves.

Fig. 3: Free space graph and the social zones defined. In colour red is shown
the intimate area, in purple the personal area and in colour blue the social one.
Number one shows the social zones for an individual human and number two
shows the cluster of two persons interacting.

If there is an interaction between the humans present, the planner groups
them together, in such a way that it is forbidden to pass between them, ensuring
that the robot does not interrupt the interaction.

Regarding localization algorithms, the navigation agent is algorithm-independent.
It has been used with different ones with different properties, so the algorithm
can be changed depending on the characteristics of the environment.

4 Planning Human-Robot interaction

As in any other context, planning human-aware navigation tasks entails defining
the elements of the planning problem: an initial world model, a mission, and a
set of actions (i.e., the planning domain). In traditional automated planning,
the initial world model is composed of a set of symbols and a set of n-ary
predicates that are used to provide information regarding such symbols. In
CORTEX, planning is performed similarly with the symbolic information in the
DSR, using the nodes of the representation as symbols and the edges of the
graph as predicates. The fact that the predicates in CORTEX are limited to the
edges in the DSR limits the usage of predicates to unary and binary ones, but it
also facilitates the visualization of the symbolic world model representation [19].
The remaining of this section describes the symbols and predicates (nodes and
edges used in the DSR) that support estimating the best plan to make the robot



8 Planning HRI for Social Navigation in Crowded Environments

achieve its navigation tasks. In this paper the term predicate and edge will be
used indistinctly.

4.1 Symbols and predicates

For navigation purposes, the robot uses three types of symbols: human, robot,
and room. This paper investigates the case where only a robot is found in the
model, but the existence of several humans and rooms is possible.

The robot and each person must be located within an existing room; for
this purpose an in predicate (edge in the DSR) is used. Robots and humans
might be paying attention to other robots and humans; for this purpose an
interact predicate is used. Humans might block the path of the robot, physically
or socially (i.e., robots are not supposed to interfere visually when two people
interact). Physical blocking is represented using block edges, while social blocking
is represented using softblock edges. To represent that a robot is close enough
to establish social interaction with a human the robot includes reach predicates.
The following section describes the most relevant actions of the human-aware
navigation domain. The actions described in the domain will help the reader
understand the meaning and usage of these predicates.

4.2 Navigation domain

The whole navigation domain is composed of 12 actions. The three most impor-
tant are described in this section: engageHuman, askForPermissionToPass, and
askForCollaborationToPass.

(a) Action’s LHS (b) Action’s RHS

Fig. 4: Action engage.

engageHuman In this proposal the first step to ask for help or permission
when navigating is engaging human interaction. This very goal is the purpose
of the engageHuman action. The action (see Fig. 4) states that if a human is
reachable the robot can interact with such person unless its symbol is marked
as busy (which is done when a human explicitly says that she or he does not
want to be disturbed). The effect of the correct execution of the action is two
new interact edges, one from the human to the robot and vice versa.
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(a) Action’s LHS (b) Action’s RHS

Fig. 5: Action askForPermissionToPass.

askForPermissionToPass Once the robot is interacting with a particular
human it can ask for permission to pass in the case it needs to cross the viewpoint
of two humans which are interacting among themselves. This would also apply
in other use cases when, for example, humans are watching television. The
precondition for the robot to be able to execute the askForPermissionToPass
action would be the existence of a human blocking its path socially (predicate
softblock) in the same room where it is located with whom the robot should be
interacting. The outcome of the successful execution of the action is that the
human stops blocking the way of the robot socially. See figure 5 for the visual
definition of the action.

(a) Action’s LHS (b) Action’s RHS

Fig. 6: Action askForCollaboration.

askForCollaboration The action askForCollaboration is similar to the previous
action askForPermission. The only difference is that in this case the human
blocks the way physically and not socially. Therefore, in this case the robot asks
the human to move and waits. See figure 6 for the visual definition of the action.

4.3 Missions

The missions are defined as in other systems, describing a subset of existing
symbols and the predicates that should be true. The two types of experiment
performed require the robot to go from one room (id 3) to an adjacent room
(room id 5), even though there are people blocking its way physically or socially.
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In both cases the goal is the same, ”go to room 5”, so the mission has two
symbols, the robot and the room 5, and a predicate that should be true (in
robot 1 room 5).

5 Experimental results

A set of simulated scenarios were used to validate the results of the proposed
navigation planning domain. The algorithms have been developed in C++ and
the tests have been performed in a PC with anIntel Core i5 processor with 4Gb
of DDR3 RAM and Ubuntu GNU/Linux 16.10. We evaluate both, quantitative
and qualitative experimental results, including social navigation metrics and the
results of a Likert-scale satisfaction questionnaire. We use a simulated version
of the robot Viriato, a social robot equipped with an RGBD camera and laser
range sensor.

5.1 Description of the experiments

The simulated scenario is a 65m2 two-room apartment equipped with a kitchen
and a living room, where two different tests are described1: i) First, a human
blocks the path in the corridor; and ii) two people talk in a vis-a-vis formation
blocking the robot path. The robot Viriato navigates through this apartment to
several positions. Fig. 7 summarises the tests in six steps: In Fig. 7.1 the robot
starts its route. Its first target is located in the corridor. In Fig. 7.2 the robot plans
its path and navigates to the human. After asking for collaboration, the robot
navigates to the first target (Fig. 7.3). In the second test (Fig. 7.4), the robot has
the target in the second room, plans its path and initiates a conversation with
people (Fig. 7.5). Finally, once the robot asks for permission to pass, it navigates
to its target position.

An example of the HRI planning is shown in Fig. 8: our social robot (labeled
as ’1’) has an approach behavior with which it can initiate conversation with
people (labeled as ’2’). As the path is blocked, the robot asks for cooperation
(labeled as ’3’). Once the path is free, our social robot navigates until its target
(labeled as ’4’). A zoom of this test in ’2’ and ’3’ robot position is drawn on the
right, where the changes in the graph of free space are illustrated.

In order to assess the effectiveness of the proposed navigation approach, the
methodology has been evaluated accordingly to these metrics in both static
scenarios: (i) average minimum distance to a human during navigation, dmin; (ii)
distance traveled, dt; (iii) navigation time, τ ; (iv) cumulative heading changes,
CHC; and (v) personal space intrusions, Ψ . These metrics have been already
established by the scientific community (see [8,23]). Results are summarised in
Table 1 and Table 2.

To assess the satisfaction of the humans regarding the robot’s behavior and
HRI abilities, a Likert scale-based questionnaire was provided to a total of 34

1 A video of the experiments is located on goo.gl/KdGYBN
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Fig. 7: The tests used in this paper in six steps

participants. The results of the questionnaire, including the questions are shown
in table 3.

6 Conclusions and future works

This paper provided a detailed introduction to the problem which autonomous
navigation aims to solve, with a special emphasis on human-aware navigation.
Despite there are many approaches to human-aware navigation, this is the first
work focused on planning navigation tasks in collaboration with humans taking
human social rules into account (see the askForPermission action).

This paper provided qualitative and quantitative results for the experiments
conducted. The quantitative data support the claim that the robot does not
interfere with humans, keeping a good distance and navigating properly (e.g., a
small Cumulative Heading Changes -CHC- value). The results of the questionnaire
evince that humans are satisfied with the overall robot’s behavior.
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