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Abstract - Landmark extraction is an essential task for robot
navigation which not only requires an effective measure, but also
the characterisation of landmarks to reduce the subsequent data
association ambiguity. This paper describes a new method to 2
detect natural landmarks from the adaptively estimated curvature Edge
function associated to 2D laser scans. This set of landmarks is eLine segentit
composed of items associated to real and virtual features of the LE§& Coruler
environment (corners, center of tree-like objects, line segments and
edges). A novelty of the proposed system is that, for each landmark, Liie segment
characterisation provides not only the parameter vector, but also
complete statistical information. Experimental results show the rve segnmelit
effectiveness of this method to deal with structured environments.

Keywords - Natural landmark extraction, Mobile robot navigation, 0 Liie segiimenit
Adaptive curvature estimation Ruvture point

RuWt 2 in3

I. INTRODUCTION Fig. 1. SET OF NATURAL LANDMARKS OBTAINED FROM A 2D LASER SCAN.

The success of the most of the tasks that facilitates robot
navigation as simultaneous localisation and map building

(SLAM),. ar codtoe bya cuaeetmaino h oo 11] or tree-like objects [12] have been used to represent onlypSeL ootae gon odmap andan efectiv ationo geometrical information of the environment. The aim of this
work is to extract and characterise simultaneously several typesprocess. In order to increase the efficiency and robustness of of landmarks that are present in structured environments using

this process, it is helpful that sensor data is transformed in a
a 2D laser range scanner (see Fig. 1). The approach must bemore compact form before attempting to compare them to the

ones presented on a map or store them in the map that is being data. More th sytemcmust provide not only uncertailn
buil. Te cosenmaprepesetatin haviy deermnesthe data. Moreover, the system must provide not only geometrical

buit. The chosenimapyrepresentatio havi.ly dtrmines te landmark description, but also statistical information to use in
prvciosin an rlindmarkbilityofpthewhfoltas.I ourepcse,tan. later task for navigation, as SLAM. In a previous version of thishave chosen a landmarkbased approach for map representation. wok8teaatv uvtr ucinwsdrcl sdt
The main advantages of this kind of approach is to allow the . p

useofriffren moelstodescribe the measurement process provide corners, line and curve segments. However, parameter
usefofdifferent modtrelsof the environment and to avoidthedata vectors extracted from this curvature function are noisy and thefor different features of the environment and to avoid the data
smearing effect [9]. However, the success of a landmark- algorithm does not provide information about the uncertainty

based representation is highlconimatrices associated to the landmarks. The proposed system usesbased r ntion is hily onditiondonlthehosntyeo this curvature function to segment the laser scan into sets of
landmark and on the availability of fast and reliable algorithms ti uvtr ucint emn h ae cnit eso
capable of extracting landmarks from a large set of noisy and ragrednswihpsntaimlrcvtueau.
uncertain data. Typically, structuredenvironments havecommon This paper is organized as follows: Section 2 and 3 briefly
geometry features which can be described by polygonal items in describe the characteristics of the data pre-processing and the
a planar map representation. Corners [1, 6], line segments [3, laser scan data segmentation algorithms, respectively. Detection
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and characterisation of the different landmarks (real and virtual
corners, edges, and line and curve segments) is shown in Section
4. Section 5 presents experimental results and, finally, Section 6
summarizes conclusions and future work.

~~~~~~~~~~~~~~~~~ ----7-

II. LASER SCAN DATA ACQUISITION AND PRE-PROCESSING -------

A

Range images provided by laser sensors are typically in polar
coordinates, {(r,)i 1 1...NR}, where rl is the measured -.A ,--------------------'----- ----f--
distance of an obstacle to the sensor rotating axis at direction
q). The scan measurements are acquired by the laser range 0 2 (a)
finder with a given angular resolution Ai = q i- - 1. Besides,
the distance rl is affected by a systematic error, Es, and a random 2
error, cr , usually assumed to follow a Gaussian distribution with
zero mean and varianceo, .Previously to segment the scan data, 0,8
the proposed system compensates this systematic error and the 0,4-.
error due to the robot motion [8]. Finally, at the same time
that these errors are corrected, rupture points can be detected.
A rupture point is defined as a discontinuity during the laser
measurement. Our laser sensor is a SICK Laser Measurement -0K
System LMS200, and this sensor returns a predefined binary data o 4 50 6 7 8
to indicate this occurrence. (b) range readiog

III. LASER SCAN DATA SEGMENTATION Fig. 2. SEGMENT OF A LASER SCAN (Eli-BREAKPOINTS); AND B) ADAPTIVE
CURVATURE FUNCTION ASSOCIATED TO SEGMENT A IN A). TWO LINE

SEGMENTS AND ONE CURVE SEGMENTS HAS BEEN EXTRACTED
Segmentation is a process whose aim is to classify each

scan data into several groups, each one of them is associated
to different surfaces of the environment. In our approach, the or the centre of curvature associated to these curve segments
segmentation is achieved in two consecutive steps. Firstly, weakly depend on the position of the segments with respect to
scan data is segmented using the adaptive breakpoint detector the robot. This problem can be avoided by fitting a model to
[4]. This algorithm permits to reject isolated range readings, the set of range readings that defines each line or curve segment.
but it provides an undersegmentation of the laser scan, i.e. Thus, line and curve segments can be used as stable landmarks.
extracted segments between breakpoints typically group two or Besides, real and virtual corners and edges are also extracted and
more different structures (see Fig. 2a). In order to avoid this characterised. In this section, the process to characterise each
problem, a second segmentation criterion is applied into each type of landmark is presented.
segment. This one is based on the curvature associated to each
range reading: consecutive range readings belong to the same A. Line Segments
segment while their curvature values are similar. To perform this
segmentation task, the adaptive curvature function associated to There are several approaches for line fitting. Thus, the
each segment of the laser scan is obtained [8]. Fig. 2b shows parameters of a straight-line in slope-intercept form can be
the curvature function associated to the segment A in Fig. 2a. determined using the equations for linear regression [11]. Then,
Curvature functions basically describe how much a curve bends the resulting line can be converted into the normal form
at each point. Peaks of the curvature function correspond to the representation
corners of the represented curve and their height depends on the
angle at these corners. Flat segments whose average value is xcosO + ysinO d (1)
larger than zero are related to curve segments and those whose
average value is equal to zero are related to straight line segments being 0 the angle between the x axis and the normal of the
(see Fig. 2b). line and d the perpendicular distance of the line to the origin.

Under the assumption of error free laser bearings, the covariance
IV. LANDMARK EXTRACTION AND of the angle and distance estimate of the line can be derived.

CHARACTERISATION However, the problem of fitting a set of n points in Cartesian
coordinates to a straight-line model using linear regression is

As it can be appreciated in Fig. 2b, the adaptive curvature based on the assumption that the uncertainty Ci associated with
function can directly provide three different natural landmarks: each yi and xi values are known exactly. In our case, the
line segments, corners and curve segments [8]. However, our points being processed in Cartesian coordinates are the result
experiments have shown us that the slope of these line segments of a nonlinear transformation of points from polar coordinates.



This makes errors in both Cartesian coordinates correlated [5], mm
i.e. all terms of the covariance matrix, C,Y, associated to a 000
range reading i in Cartesian coordinates can be non-zero ones.
Therefore, a better approach for line fitting is to minimize the 2000
sum of square perpendicular distances of range readings to lines.
This yields a nonlinear regression problem which can be solved 1000
for polar coordinates [2]. The line in the laser range finder's
polar coordinate system is represented as

-1000:

rcos(O- )=d (2)

where 0 and d are the line parameters (Eq. (1)). The . , 2 3 400 5 60 m
orthogonal distance di of a range reading, (r, 0) i, to this line (a)
is mm

3000-,1
di =ricos(f oi) d (3) 000

2000-
and the sum of squared errors can be defined as

(4) ~~~1000Si (b) En 1di' =i,=1(ri(O i) -d)2 (4) t0g =- 0
0

being n the number of range readings that belong to the
line segment and b (0 d)T the parameter vector. Arras and 1000
Siegwart [2] propose to weight each single point by a different
value wi that depends on the variance modelling the uncertainty
in radial and angular direction. In our case, uncertainties in range
and bearing are the same for every range reading, so the weights (b)
for each point in polar coordinates are also equal. Therefore, we Fig. 3. 2D LASER SCAN; AND B) SEGMENTATION AND LANDMARK
have not used these weights. The model parameters of the line DETECTION ASSOCIATED TO A). (EL -LINE SEGMENTS END-POINTS, O -REAL
(0, d) can be obtained by solving the nonlinear equation system CORNERS, A -VIRTUAL CORNERS, -CORNER ORIENTATIONS). CIRCLES

to minimize (4). The solution can be used in Cartesian form for ARE ALSO REPRESENTED.
computation reasons [2]:

(-2Zj arcta(,x -Xi)N Fig. 3b shows the line segments extracted using the described
O 1arctan = (5rctan) approach and corresponding to the laser scan in Fig. 3a.

d= o 0+y sinS0The end-points of each line segment are determined by the
intersection between this line and the two lines which are

where =ri cos Obi/n and - ri sin Oi /n. perpendiculars to it and pass through the first and last range
In order to provide precise feature estimation, it is not only readings.

necessary to extract the feature parameter vector, but also to
represent uncertainties and to propagate them from single range B. Curve Segments
reading measurements to all stages involved in the feature
estimation process. Assuming that the individual measurements A curve segment of constant curvature can be considered
are independent, the covariance matrix of the estimated line as an arc of a circle which is basically described by its center
parameters (0, d) can be calculated as [5] of curvature (xc Yc) and its radius p. Circle fitting problem

n jtCxY,
iT estimates these parameters finding the vector b (x c, Yc, p) that

CO,d = JCxyiji (6) minimizes

where the terms Ji represent the Jacobians for each point i SC(b) En1 [(X xC)2 + (yi Yc)2 p2]2 (8)
and are obtained as follows

jl _=ao _(y-yj)D+(__-xj)N where {(X, Y)} i= ... n is the set of range readings that defines
1,-Xi N2+D2 the curve segment in Cartesian coordinates. However, the
(1,2 Y 2(D=x+D)2 (7) covariance matrix associated to each range reading in Cartesian

J2,1 =9d = n cosI+ (-cosO xsinO) (yyjD+(D2 xj)N coordinates is different and then, each term in Eq. (8) must
l 1n + (-ny N( D be 2eghedby a value which will take into account the

measurement uncertainty. In our particular case, this can
being N andD thenumerator anddenominator ofthe expression be avoided if we work in polar coordinates, because in this
of 0 (5). coordinate system, the covariance matrix is the same for each



reading. Therefore, our aim is to find the circle (X,Xi)2 + (yi- always defined as the intersection of two lines. Once a corner is
YC)2 - p2 0 where x r cos , y =r sin , xc r= cos c and detected, its position (xc,yc) is estimated as the intersection of
Yc = rc sin Xc, yielding the two lines which generate it. If these lines are characterized

by (01i di) and (02, d2), the corner point (ac, Yc) will be the
r2 + r - 2rrc cos( -C) - p2 0 (9) intersection of these lines, i.e.

To minimize SC(b) = Sc(rc, 0, p), finding the parameter xccos0O + ycsin0l- d = 0 (13
vector b, we use the Levenberg-Marquardt algorithm [7]. This xc COS 02 + yc sin 02 - d2 = (
algorithm approximates Sc as a linear function of b, Sc:

Resolving (13), we obtain a value for ( c,yc):
Sc(b) - Sc(b) Z(di(bk) + Vdi(bk) b)2 (10)

_ dl sin02-d2 sinO Y_ d2cosOj-dICos02 (14)
where di(b) = ri -2rirccos(i_c)_p2 and Vdi(b) is the sin(02-Oi) sin(02-Oi)
gradient of di (b). This estimation is valid within a certain trust The corner orientation ac can be also calculated as the
region radius. The algorithm begins using an initial parameter bisector of the angle defined by these two lines. Finally, the
vector bo. Then, the derivation considers how to minimize Sc (P). covariance of the estimated corner parameters can be calculated
A whole description about this method is described in [7]. To depending on the noise in the line parameters (see Appendix).
obtain this parameter vector bo = (Xc, Yc, p), we use the equation Fig. 3b illustrates the real corner detection results. Corner poses
of a circle passing through three given points, (x 1, Yi), (12, Y2) and uncertainties have been marked.
and (X3,y3):

D. Virtual Corners
Yc = (a f - c* d)/(b. d - a e)
Xc = (yc -b)/a + c/a (11) As it is pointed out by Madhavan and Durrant-Whyte [6],
p = Vll'(-( 1C)2 + (Yi -Yc) 2) one of the main problems of a localization algorithm which

is only based on corner detection is that the set of detected
natural landmarks at each time step can be very reduced. This

a= 2(X2 - X1) b =2(Y2 -Y) generates a small observation vector that does not provide a
C = d 2 + Y2 2 A d = 2(X3-1) (12) good estimation of the robot's pose. To attenuate this problem,Y 1 2 2

2 2 2 2 we include in this work a new natural landmark which can

be used in the same way that real corners: the virtual corner.
From these expressions (see Appendix), an estimation of the Virtual corners are defined as the intersection of extended line

curve segment uncertainty, represented as C(rc, Oc, p), can be segments which are not previously defined as real corners. The
derived. Fig. 3a presents a real laser scan containing columns virtual corner described in this paper is related to the virtual
and tree-like elements that are extracted and represented (center edge anchor [10]. However, in our case, the virtual corner is
and circumference) in Fig. 3b. Uncertainties associated to the related to the line segments previously extracted. The virtual
center of the circles are also shown. edge anchor is found without explicit line extraction and offers

higher robustness against partial occlusion and noise effects. In
C. Real Corners our approach, the robust detection of lines is directly related to

the adaptive curvature estimation algorithm and the process used
Corners are due to change of surface being scanned or to for line characterization.

change in the orientation of the scanned surface. Thus, they Finally, virtual corners can be characterized using the same
are not associated to laser scan discontinuities. In order to process described for a real corner in Section IV-C. Fig. 3b
obtain the corner location, it must be taken into account that shows virtual corners (poses and uncertainties) associated to
failing to identify the correct corner point in the data can lead laser scan in Fig. 3a. The error propagation due to the distances
to large errors especially when corner is distant from the robot. from the lines to the virtual corners can be appreciated in their
Therefore, it is not usually a good option to locate the corner in uncertainty ellipses. Fig. 3b also presents that virtual corners
one of the scan range readings. Other option is to extract the increases the size of the extracted observation vector.
corner taking into account the two lines associated to it. Thus,
corner can be detected as the furthest point from a line defined E. Edges
by the two non-touching end-points of the lines or by finding
that point in the neighborhood of the initial corner point, which The adaptive breakpoint detector searches for large disconti-
gives the minimum sum of error variances of both lines [5]. In nuity values in the laser scan data. Range readings that define
our case, the existence of a corner can be determined from the this discontinuity are marked as breakpoints. Edges are defined
curvature function [8], but its characterization (estimation of the as breakpoints associated to end-points of plane surfaces [12].
mean pose and uncertainty measurement) is conducted using the To satisfy this condition, the portion of the environment where
two lines which generate the corner. Therefore a corner will be the breakpoint is located must be a line segment and it must
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Fig. 4. AN EDGE IS DEFINED AS A BREAKPOINT ASSOCIATED TO THE
END-POINT OF A PLANE SURFACE WHICH IS NOT OCCLUDED OBSTACLES. 0 1000 2000 3000 4000 5000 60700 m

(a)
not be occluded by any other obstacle. This condition is true
if the breakpoint is nearer to the robot than the other breakpoint 000
defined by the same large discontinuity (see Fig. 4). Edges are 2000.
characterised by the Cartesian position (x, y) of the breakpoint 3000 .. . . ............
and by the orientation of the plane surface described by the
line segment, a. Thus, the covariance of the estimated edge 4000
parameters (xe, Ye, ae) can be approximated as 5000-

r¢7 (xy 01X Ir #rl*-#
LK1 oo2 01 (15)

0 0 (7a ~~~~~~~~~~~3000-100 bo 3000 sooo mm

2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)
where (72 is the orientation variance associated to the line

segment. Fig. 5. SCANS OF TWO INDOOR ENVIRONMENT TO TEST THE PROPOSED
SYSTEM. REAL LAYOUTS ARE SUPERIMPOSED IN THE IMAGES.

V. EXPERIMENTAL RESULTS
VI. CONCLUSION AND FUTURE WORKS

The feature extraction system has been implemented on
an ActivMedia Pioneer2-AT equipped with a LMS200 sensor. In this paper an algorithm for feature extraction and
Algorithms have been programmed in C++ on a 855 MHz PC. characterisation from laser scan data is presented. This
The experiments presented in this section are taken from two algorithm segments the laser scan using an adaptive noise
different indoor settings, a laboratory (Fig. 5a) and a corridor removal. This permits to detect features at a wide range of
(Fig. 5b). Experiments has been focussing in order to obtain scales for a fixed set of detection parameters. This feature are
an evaluation of the proposed method about the speed (t), characterized not only by their parameter vectors, but statistical
robustness (rlandmark, % of times a feature has been detected information is also obtained. Then, the algorithm can provide
divided by the % of times it has been visible), the total number a large set of landmarks to the later mapping and localisation
of detected landmarks (k) and the number of multiple detections modules thus reducing the time required for a mobile robot to
of the same feature (kin). Table I shows the average values for successfully localise itself. The accuracy and robustness of the
these experiments composed of 50 scans. proposed method was demonstrated in a real indoor environment

satisfying real time requirements. Future works will focus in
TABLE . comparing our system with other different methods and use these

EXPERIMENTAL RESULTS OF THE ALGORITHMS extracted landmarks in a whole SLAM process.
t[ms] rrc r,c r18 rcS re || k kk -,m

Test 1 25 0,91 I 0,98 0,98 0,87 I 0,94 21 0,02 ACKNOWLEDGMENT
Test 2 22 0,94 0,97 0,98 0,84 0,96 10 0,09
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being A=x - xc and B =yl -yc.
APPENDIX

II. DERIVING THE COVARIANCE MATRIX ASSOCIATED TO A

I. DERIVING THE COVARIANCE MATRIX CORNER
ASSOCIATED TO A CIRCLE SEGMENT

After the first order Taylor expansion, the covariance asso-

A circle is characterised using its center and radius, ciated to a corner, represented as Cx,y,oe, can be aproximated
(Xc, Yc, P). To calculate the uncertainty associated to a circle as
segment, Cx,, y,,p, we define b as [xc Yc p]T f(xc:,yc,p)* CXYa. = JCriaIr2a22JT (36)
Then the first order Taylor expansion of b is

being CrI IIr.2 12 the covariance matrix associated to the lines
Ab= Vf(x,y)A[xT YT]T= JA[xT yT]T (16) which generate the corner. Taking into account that a = (a 1-

a2)/2, the elements of the Jacobian J can be calculated as
being J the Jacobian of f (x, y), whose elements are obtained follows

taking intaccount Eqs. (11) and (12). If we would calculate this _1= axD,1 sin(c2-c37)
Jacobian, we can approximate the covariance as 1 rl sin(a2-a,)

C9X( -r2cosoaIsin(ca2-aI)+Ac0s(ca2-aI) (38)

C(xc,yc,P) (17)YXl2Y2X3Y317 sin (a2-al)
J3 Dx, - sin al (9

To obtain an approximate covariance and calculate the Dr2 sin (c2 -cv) (39)
Jacobian, we can consider 1x9 rCSa2sin(a2-)-AC0S(a2-aI) (40)

D9a2 sin2 (a2-cal)

Yc = af D R = p2 (18) Jl, 2 = DYr - cOS-a2 (41)

where the constants a, b, c, d, e, and f are defined in (12). Dy2 , -= r2sinaIlsin(ac2-a-I)+Bc0s(ca2-ctI) (42)DJ2 i 2i2 (c42c)1
Then, the elements of the Jacobian can be calculated as

___l -Dyxl= c3 * a+ 2-(byc + xia + c) (19) '3,2 Dr2 sin(cv2-cti) (43)

Dxyi b2/ylNy)
J4,2 = =sin_(2°l)- (44)

11 2
ax, Oyl ~~~(20) Dc, o j Dc, 1

0 3v' b+(a )(0 J1,3 = arl =° J2,3 = ,a1a= 2 (45)

J1,3 Dcx2 Dxc32 *a a2(byc + 2a+c) (21) 'D3 <r2 Dc4 <02 2 (46)

b2 ~~~~~~where A =r1sinoa2-r2 sina°1 and B =r2cos1°E-Dx1 &YXc=a2 ±+(yc y2) (22)\ r1cos a2.DY2 a


