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Abstract— The use of robots in underwater exploration is
increasing in the last years. The automation of the monitoring,
inspection and underwater maintenance tasks requires the
understanding of the environment. One of the key issues of
these systems is to recognize in the objects in the scene. This
paper proposes a method to provide a semantic mapping using
acoustic images acquired by forward looking sonar (FLS). The
method represents the environment using Gaussian probability
density functions. Furthermore, we efficiently segment and
classify the structures in the scene. Finally, we create a semantic
map of the scene. We evaluate the method in a real dataset
acquired by an underwater vehicle performing autonomous
navigation and mapping tasks in a harbor area.

I. INTRODUCTION

The problem of building a map while robot is moving

is an essential task in autonomous robotics, which has

been extensively studied in the literature. A map of the

environment allows robots to develop other important skills

such as navigating, self-localizing or interacting, among

others. How an autonomous robot builds a representation

of its surrounding has been analyzed from different points

of view in the scientific community in the last years (an

interesting survey about mapping is found in [1]). Most

of solutions proposed in the literature for this problem are

addressed using representations of the spatial structure of the

environment (e.g., occupancy cells or geometric features like

segment lines). However, using only a spatial representation

of the environment is difficult to perform other tasks suc-

cessfully. This tendency is now changing, and the scientific

community is experiencing an increasing interest in so-called

semantic solutions, which integrate semantic knowledge and

geometrical information [2].

Recently, several advances in semantic mapping have been

achieved. In fact, ground robots that incorporate capabilities

for task planning and storing some semantic knowledge

in their maps are commonly used (e.g., classification of

spaces, such as rooms, corridors or garden, and labels of

places and/or objects) [2]. However, very few works have
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pnuntru@unex.es

been achieved in underwater robotics where the semantic

knowledge of the environment could be applied to predict

changes and to take high-level decision. In fact, the mapping

problem in underwater robots has been addressed typically

by using geometric information and using sonar or RGB

sensors [3]–[5].

In order to autonomously acquire semantic information

from an underwater environment robots have to be equipped

with sensors and the ability to extract high-level knowledge

from the scene. This paper proposes an object detection

and representation system by using a Forward Looking

Sonar (FLS). The use of sonar offers the advantage to be

invariant to the water turbidity, however, data suffer distortion

and noise and thus, processing the acoustic signal still a

challenge. Besides, the available data can be summarized to

untextured range data and thus, only information about the

shape of the detected objects is able to be acquired.

Several works proposed methods to identify objects on

acoustic data as [6]–[10]. However, none of them recog-

nize objects and create semantic maps. [6] proposed an

underwater object classification on multi-beam sonar data

by considering the specific domain knowledge with limited

number of shapes.

The present work detects and recognize objects in the

scene that allow us to create a semantic map. We evaluated

our approach on real data acquired in a harbor area using

a forward looking sonar (FLS). The images are segmented

and described using an adaptation of the method previously

proposed by the authors [11], [12]. Furthermore, the shapes

are classified using a machine learning technique. A new tool

is developed to annotate sonar data that allow us to train the

supervised model. The proposed method is evaluate on the

dataset ARACATI 2014 [13]. Figure 1 shows an example of

the semantic map obtained using our approach.

II. ACOUSTIC IMAGE FROM A FORWARD LOOKING

SONAR

The forward looking sonars (FLS) are active devices which

produce acoustic waves that propagate through the medium

until they collide with an obstacle or be completely absorbed.

When a wave collides with an obstacle, part of its energy is

absorbed and the other part is reflected. The reflected portion

which returns to the sensor is recorded using an array of

hydrophones. The round trip of the wave is called ping.

The waves captured by the hydrophones are organized

according to its return direction and their distance to the

reflecting object. Acoustic returns from the same direction

belong to the same beam. The returns recorded over time in

a beam are called bin. A fan-shaped acoustic image I(X,Y )
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Fig. 1: Semantic map created using our approach. a) the

sonar data acquired by a FLS and the segmented areas using

colors. b) the water surface image with the associated objects.

We show the poles in red and the hulls in green.

is one way to represent the beams and bins information

recorded by the sonar for a certain period of time. In Figure

2 is shown how an acoustic image is described in function

of their beams and their bins.

Figure 1a shows an example of acoustic image captured at

harbor of Yacht Clube de Rio Grande, Brazil. In this image

the pixels are associated with bins, and they are indexed

according to their distance rbin and their azimuth direction

θbin from the sonar, as show in Figure 2. Due to the FLS

conception, the height information of a bin are not captured

and, therefore, the acoustic image is a 2D representation of

the observed environment.

Although the sonars are almost independent of the water

turbidity conditions, they have some characteristics that make

it difficult to handle and to extract information, such as:

• The inhomogeneous resolution. The amount of pixels

used to represent a bin varies according to its distance

to the sonar. In Figure 2 is shown two bins overlapped

by a box. The orange box covers the farther one and

the blue box covers the closer one. The covered area

by orange box is bigger than blue box. This fact causes

image distortion and objects flatness.

• The intensity variations of each bin. It is caused by

water attenuation, changes in sonar tilt or sensitivity

differences between the hydrophone.

• Acoustic reverberation caused when two or more acous-

tic returns from the same object are captured producing

duplicated objects in the image.

Fig. 2: Acoustic images description where the beams and the

bins are depicted.

• The acoustic shadow effect produced by objects that

block the path of the acoustic waves, producing a region

without acoustic feedback after the blocking objects.

These regions are characterized by a black spot in the

image and hide a part of the scene causing occlusion of

objects.

• The speckle noise due the low signal-to-noise ratio

caused by mutual interference of the sampled acoustic

returns.

III. METODOLOGY

The semantic mapping method is divided in steps that

include image enhancement, segmentation, description of

each segment and classification. A tool has been developed

to perform all the steps of the proposed method and to create

training data to the supervised classifier.

A. Image Enhancement

We applied in this step an image correction method. The

method is similar to proposed in [14]. First. we found the

sonar insonification pattern by averaging a large group of

acoustic images. After that, the sonar insonification pattern

is applied to each image mitigating the effects of the nonuni-

form insonification and the overlapping problem of acoustic

beams.

B. Image Segmentation

Due to the low signal-noise ratio, the acoustic image

segmentation step is one of the largest challenges faced

by our methodology and its quality directly influence the

final results. We segment images using an adaptation of the

segmentation method proposed in our preview work [12].

The segments are formed by groups of 8-connected pixels

extracted using an intensity threshold. A local parameters

adjustment are performed by intensity peak analysis of each

beam. The intensity threshold depend of the height of the

local peak intensity. In Figure 3 is shown an example of this

segmentation approach for a single beam, represented by the

blue line. The extracted segments are marked by colored

pixels.
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Fig. 3: Example of the segmentation step showing the peak

analysis of a single beam. a) the beam intensity profile, where

the horizontal axis represents the bins and the vertical axis

represents the intensities; b) the acoustic image with the

analyzed beam, represented by a blue line, and the extracted

segments. The detected peaks are identified by colored circles

on both images.

This segmentation approach presents three parameters

named as Hmin , πrecursive and πend. Hmin defines the

smallest intensity height of a peak to be used to extract

one segment, πrecursive is the intensity rate of the peak

used to compute the intensity threshold for segmentation and

πend defines the rate to close a peak analysis and start the

next peak analyze. In a single beam intensity profile many

peaks are detected and only the peaks with greater intensity

variations are used to extract one segment, i.e. intensity larger

than Hmin.

C. Describing segments

After the segmentation step, each segment is described

using a Gaussian probabilistic function and the following

information about each segment is computed. Initially, width
and length are computed using a covariance matrix that

relates the x and y position of each pixel of the segment.

The eigenvalues and eigenvectors of the covariance matrix is

computed using Singular Value Decomposition (SVD). The

width is defined as the largest eigenvalue and height defined

as the second largest eigenvalue. Furthermore, the segments

area is computed using the Green’s theorem that gives the

relationship between a line integral around a simple closed

curve. This area is computed using the implementation of

the OpenCV library [15]. Finally, we determine the convex

hull area of the segment, the perimeter of the segment, the

mean and the standard deviation of the acoustic intensity of

each segment.

These data are important to represent a segment. Almost

all data are geometrical information, however the mean

and the standard deviation of the intensities represents the

acoustic data.

Based on these information, we defined two set of features

to be used in the next step. The first 2D features is only

composed by width and length. In addiction to the width and

length, we defined the 10D features. They are composed

of Inertia Ratio, i.e. width divided by the height, mean
and standard deviation of the acoustic returns, segmented
area and convex hull area. Furthermore, we compute the

convexity, i.e. the segmented area divided by the convex hull

area, the perimeter and the amount of pixels in the segment.

D. Segment Classification

In this step, each segment are classified using a supervised

classifier. The Support Vector Machine (SVM) technique

is adopted. The SVM technique is a classifier that models

the data as a k-dimensional vector and defines an optimal

hyperplane that best separates the vectors depending on your

class. The hyperplane is defined by an optimization algorithm

in the training step.

The training data of SVM is generated using the developed

tool that allows the manual annotation of each segment

label. The Figure 4 shows a screenshot of the tool with

some annotated segments. The tool was developed using the

OpenCV library [15].

The classification using SVM is based on the libSM library

[16]. Its implementation presents several type of kernels

that allow us to deal with non-linear classification. The

available kernels are: polynomial, radial basis function (RBF)

and sigmoidal kernels. Among these kernels, we empirically

chose the radial basis function (RBF). As described in [16],

the two parameters must to be defined: γ and C.

These parameters are optimally set through an auto train-

ing function that build a grid with the classifier performance

by varying the two parameters (γ, C). The performance of

the classifier is calculated by cross validation. The training

data are divided into k groups, one of them is used for cross-

validation and the others train the classifier. The minimum

and maximum value of the grid must be defined to use auto

training function. In this work was defined a grid starting

with 0.1 and ending with 60 for both parameters γ and C.

IV. EXPERIMENTAL RESULTS

The experimental results are performed using the acoustic

images of a FLS from dataset ARACATI 2014. The training

dataset of the SVM classifier was created using the developed

tool. Resuls are performed using 2D features and 10D
features as described in Sec. III-C.

A. Dataset ARACATI 2014

The dataset ARACATI 2014 provided by [13] was created

using a mini Remote Operated Vehicle (ROV) LBV300-

5 from Seabotix equipped with a Forward Looking Sonar
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Fig. 4: A sample acoustic image of the training set generated

by the developed tool. A demonstration video is available

[17].

Fig. 5: Satellite image of the harbor with the trajectory

traveled by the ROV during the acquisition of the Dataset

ARACATI 2014 [13].

BueView P900-130 (900kHz) and a Differential Global Po-

sitioning System (DGPS). Throughout entire path the ROV

remained closer to the water surface because the use of

DGPS. The harbor structures such as poles, piers and boat

hulls and also stones are visible in the acoustic images. Some

of these objects are highlighted in Figure 1. The Figure 5

shows a satellite image of the harbor with the trajectory

traveled by the ROV.

B. The SVM training dataset

The SVM training dataset generated with the developed

tool consists a total of 548 segments over 148 acoustic

images which were manually classifieds in one of the five

different classes: Pole, Boat Hull, Stone, Fish and Swimmer.

In Table I is shown the total amount of segments in each

class. Table II is shown the parameters used by the segmen-

tation algorithm.

TABLE I: Dataset information

Classname Amount

Pole 282

Boat Hull 86

Stone 122

Fish 46

Swimmer 12

Total 548

TABLE II: Segmentation parameters

Parameter V alue

Hseach 250

πend 0.1

πrecursive 0.94

searchdistance 10

minsegsize 10pixels

maxsegsize 1200pixels

C. Results using 2D features
Firstly, we performed experiments using 2D features. All

the 548 segments were used for training the SVM classifier

using cross-validation and auto training function that esti-

mate the better parameters γ and C using k-subsets of the

training data.
Six tests were performed. Three of them consider all the

five classes. The other three tests exclude the class stone. The

class stone is critical because represents the segments with

large size of width and height. This class hinders the training

of other classes whose predominance of small segments is

greater. The tests were carried out varying amount of sub

groups created by the auto training function, the parameter

k . The results can be seen in Table III.

TABLE III: Results using 2D features

Five class results

Parameters Result

γ C k Hit(%) Figure

14.204 10.671 2 85.94 6d

3.740 18.905 5 85.58 6e

3.400 20.796 10 83.02 6f

Result without stone class

Parameters Result

γ C k Hit(%) Figure

49.030 1.311 2 88.26 6a

3.740 18.905 5 85.58 6b

57.665 0.500 10 88.02 6c
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For the case of 2D features, interesting images can be gen-

erated to show the classifier hyperspace and its hyperplanes

that separate each class. These images are shown in Figure

6. In this image each circle represents a segment used on

the training step. Each class is represented by a color such

as fish is yellow, pole is green, boat hull is red, swimmer is

blue and stone is cyan. The origin of the classifier space is in

the upper left corner. The horizontal axis grows to right and

represents the segment width, and the horizontal axis grows

to down and represents the segments height.

The classifier space must be normalized before training

to achieve a good results. This normalization reduces the

scale problem and makes all the dimensions have the same

importance to the classifier. The maximum and minimum

values adopted in the normalization are obtained using the

analysis of the extracted segments (Table IV).

TABLE IV: Maximum and minimum values to normalize the

dataset.

DimensionName WithStones WithoutStones

Min Max Min Max

Width 1.49 94.42 1.49 51.13

Height 3.45 394.92 3.45 186.92

Using only the width and height of the segments, we

correctly classified 85.94 % of the segments. One of the

difficulties of this approach is that there are segments with

similar width and height and does not belong to the same

class. For this reason, we consider more information about

the segment to achieve better results.

D. Results using 10D features

We performed experimental evaluation using 10D features

to achieve better results. As previously described, we nor-

malized every dimension using the minimum and maximum

values shown in Table V.

TABLE V: Maximum and minimum values to normalize the

dataset.

DimensionName Min Max

Width 1.49 94.42

Height 3.45 394.92

Inertia Ratio 0.072 0.77

Std. Intensity 67.6105 2538.62

Mean Intensity 264.727 1777.71

Area 0 43805.5

Hull Area 5 20032

Convexity 0 3.00408

Perimeter 15.3417 21463.3

Pixel count 10 1200

TABLE VI: Ten dimensional experiment results

Parameters Result

γ C k Hit(%)

1.919 44.579 2 85.58

1.442 22.876 5 87.95

8.819 8.819 10 93.97

We obtained the results shown in Table VI using 10D

features. These results surpass those obtained using 2D

features. The classifier is able to correctly classify up to

93% of the segments using the training data divided into

10 subgroups. Another test was conducted without using the

auto training function. In this test were manually defined

the parameters γ = 28.45 and C = 41.55. The classifier

could correctly classify 99.81% of the segments. Despite the

possible overfitting, this result shows that the classifier is

able to distinguish the five classes of the problem.

V. CONCLUSION

We presented a method to detect and classify objects using

a FLS images. The method allows us to build semantic

maps of underwater environments. The method uses SVM

classifier to detected objects by using its geometrical and

acoustic information.

A tool has been developed to create the training data and

perform the objects classification. It was shown that it is

possible to identify and classify objects automatically in a

real environment at a harbor using a forward looking sonar

images.

The semantic map can be adopted to assist in mapping

and localization of an autonomous robot. For example the

information of static objects such as classes pole and stones,

and dynamic objects such as swimmer, boat hull and fish

can be used to build a more accurate environment map for

autonomous navigation.

Future works will be focused in integrate the proposed

approach in SLAM method. Furthermore, the development

of autonomous navigation using semantic information is also

on going.
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