
Improving a Robotics Framework with
Real-Time and High-Performance Features
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Abstract. Middleware has a key role in modern and object-oriented
robotics frameworks, which aim at developing reusable, scalable and
maintainable systems using different platforms and programming lan-
guages. However, complex robotics software falls into the category of
distributed real-time systems with stringent requirements in terms of
throughput, latency and jitter. This paper introduces and analyzes a
methodology to improve an existing robotics framework with real-time
and high-performance features using a recently adopted standard: the
Data Distribution Service (DDS).
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1 Introduction

Software Engineering for robotics is focused on designing and implementing
robot control architectures to be reusable, scalable and maintainable, so that
software modules and algorithms for robots can be adapted to new platforms
and requirements, not only reducing the cost and time-to-market of a complete
robotics system but also improving its overall performance. In this application
domain, the complex tasks performed by a robot are divided into distributed
processes, which communicate using a middleware. This key software layer con-
nects networked applications in a platform and language-independent manner.
The middleware also hides low-level communication details from developers.

One of the most important milestones in the robotics field has been the cre-
ation of libraries and object-oriented frameworks for building robotics software.
Although some of these frameworks are now mature and widely used in the
robotics community for research purposes, sometimes it is unclear whether they
will allow developers to deploy complete systems in embedded platforms which
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2 Jesús Mart́ınez, Adrián Romero-Garcés, Luis Manso, and Pablo Bustos

meet the stringent real-time requirements that a running robot needs. Therefore,
rigorous analysis must be done to guarantee deterministic behaviors that do not
miss any critical deadline, and it is not surprising that the use of third-party
software, such as middlewares, may affect the predictability and performance of
a system if they can not be adjusted properly.

Unfortunately, some middlewares are not best suited to implement distributed
and real-time embedded (DRE) robotic systems. However, widely adopted frame-
works may not replace middleware easily, unless they are redesigned from scratch.
This paper presents our experiences to adapt a robotics framework to be DRE
compliant. In our study we have selected the novel Data Distribution Service for
Real-Time Systems (DDS) standard [10] from the Object Management Group
(OMG), which addresses the anonymous, decoupled, and asynchronous commu-
nication among a data sender, called publisher, and its subscribers. This standard
addresses the needs for real-time and quality of service (QoS) of distributed ap-
plications, and it is being adopted in mission- and business-critical applications,
such as air traffic control, telemetry or financial trading systems.

The main contributions of the paper are i) the proposal and demonstration
that a DDS-based middleware improves significantly a component-based robotics
framework (RoboComp [15]) in terms of throughput, latency and jitter, and ii)
a methodology to incorporate this middleware to the framework with minimum
changes from a developer’s perspective, which also ensures backward compat-
ibility with previously deployed modules. Our study shows interesting results
that help to conclude that the use of DDS will be important for the robotics
community in the years to come.

The paper is organized as follows. Section 2 gives an overview of the state
of the art in middleware for robotics. Section 3 introduces our methodology to
include DDS in RoboComp, a component-based robotics framework. Finally, we
give some concluding remarks.

2 State of the art in middleware for robotics

Design patterns [4] and frameworks have been used within the robotics commu-
nity in many proposals [5, 7, 2, 3, 1, 15]. In general, these open source approaches
provide a catalogue of services (from low-level to high-level tasks) which allow
developers to reuse existing code in order to create complex software for a robot.
They also rely on some kind of middleware to allow the deployment and com-
munication of services within a distributed platform, where resource-intensive
software modules are executed in different network nodes.

The middlewares proposed by Player [5] and Carmen [7] are the most basic
ones, and require some management of low-level communication details from
developers in order to implement new distributed services, for instance to define
new message types in a platform-independent way using a specific C API (Car-
men) or using the eXternal Data Representation (XDR) notation [16] and its C
compiler (Player).
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Other frameworks hide these complexities from developers by using platform
and language-independent standard middlewares, which follow the distributed
object computing paradigm, such as the CORBA [11] standard by the Object
Management Group (OMG) or the Internet Communications Engine (Ice) by
ZeroC [19] (an industrial-quality middleware used in many critical projects). The
two middlewares make use of an Interface Definition Language (IDL) to define
communication interfaces for distributed objects, which will be available through
the so-called Object Request Broker (ORB). This is the approach followed by
Orocos [2] and Miro [3] (CORBA-based), or by Orca [1] and RoboComp (Ice-
based).

All of the above-mentioned frameworks may be configured to use a tradi-
tional client/server communication model (one-to-one) for remote procedure
calls (RPC) or remote method invocations (RMI), although Carmen and Orca
also use a publish/subscribe model (one-to-many). The latter is usually imple-
mented using a central process (the broker) that delivers published messages to
the processes that were previously subscribed to them. Although this mechanism
decouples the way in which robotic services communicate, the use of a central
broker has a direct impact in the overall performance of the system, reducing
also its fault tolerance.

As software for robotics falls into the category of DRE systems, Orocos and
Miro include mechanisms to ensure predictability and fully deterministic behav-
ior. Orocos makes use of the so-called Real-Time Toolkit, a set of C++ primitives
to implement (lock-free) data exchanges and event-driven services in hard real-
time. Miro relies on TAO [17], an open source implementation of the real-time
CORBA standard [8] in C++. TAO provides predictable end-to-end quality of
service in a modular and flexible design. It has an ORB that supports real-time
concurrency and real-time event services [6] for CORBA.

Although CORBA (or Ice-based) applications are sometimes referred to as
components, they are not exactly equivalent. Components are autonomous and
loosely coupled pieces of software which allow developers to create more mod-
ular and extensible software. Therefore, the Object Management Group has
standardized the CORBA Component Model (CCM) [9]. CCM aims at creat-
ing component-based distributed systems which communicate using well-defined
CORBA interfaces. A component is described using the Component Implementa-
tion Definition Language (CIDL), an extended version of the CORBA IDL. CCM
components are composed of attributes, facets (provided interfaces) receptacles
(dependencies on external interfaces) and event sources and sinks. Components
run within containers, which provide their runtime environment and are also re-
sponsible for local and remote communications (using an ORB). CCM is now a
mature specification for component-based developments and it is already avail-
able in several open source middlewares such as the Component Integrated ACE
ORB (CIAO) [18], which supports the TAO real-time ORB, making it possible
to maintain predictable behavior. Nevertheless, The CORBA Component Model
(and its associated specifications) are not widely used. In spite of that, the OMG
aims at their future adoption within the robotics community by standardizing
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Fig. 1. RoboComp management tools (left) and its component generation process
(right)

its novel Robotic Technology Component Specification [12], which focuses on the
structural and behavioral features required by robotics software as a supplement
to a general component model.

Meanwhile, some of the robotics frameworks described above have defined
their own component model, such as Orocos and RoboComp. The components
in Orocos are not language-independent and must be implemented directly in
C++. However, RoboComp takes advantage of the Ice IDL capabilities to de-
fine and implement component interfaces for several programming languages.
The following section discusses some of the main features of the RoboComp
component model and its powerful management tools.

3 Improving robotics software with DDS

This section describes the improvements we have made to the RoboComp frame-
work to be DRE-compliant. Therefore, we have recommended and justified the
use of the DDS standard (and one of its open source implementations) as the
most appropriate real-time middleware for RoboComp.

3.1 The RoboComp framework

RoboComp is a general purpose, open-source and component-based robotics
framework. It provides ease of use and rapid development of robust software by
providing a wide set of management tools that help robot software developers
in most of their everyday tasks. RoboComp is also designed to be used as a
hardware abstraction layer (HAL) for sensors and actuators (like Player) by
standardizing some of its component interfaces.

As mentioned in the previous section, RoboComp relies on the Ice middle-
ware, which has a wide language and platform support. Ice allows developers to
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design distributed applications with a high-degree of fault-tolerance and secu-
rity, using remote exceptions and secure connections, respectively. It supports
RMI (in both synchronous and asynchronous mode) and publish/subscribe com-
munications (using a centralized broker called IceStorm).

The point where RoboComp departs from Orca, or other Ice-based frame-
works, is in its component model and in its configuration model. RoboComp
components are composed of four modules. The first module is the main proce-
dure, which acts as a ready-to-use runtime environment and as the component
container. The second module includes the Servant classes that inherit from the
skeletons generated by the Ice IDL compiler. They must implement the behav-
ior associated with the interface operations. The third module is the Monitor
class, a thread in charge of the initialization procedures which checks that the
component is ready for a safe execution. The fourth module is the Worker class,
which is the component main class. It encapsulates its behavior including the
communication with other components using Proxies (the RMI stubs generated
by the IDL compiler).

Fortunately, RoboComp provides developers with an automatic component
generator tool (componentGenerator), a command line application which gen-
erates code from IDL files. Users only need to specify the interface names of
the other components that will be accessed during the execution. The complete
process is depicted in fig. 1 (right).

RoboComp also includes powerful management tools. The component man-
agement tool (fig. 1-left in background) is a visual application which displays the
status of the whole system as a graph of interacting components. Each node in
the graph is depicted with a color that represents the activity/inactivity of the
component. Upon demand, it is also able to show the configuration properties
of each component, and to start or to stop them while respecting their depen-
dencies. The monitoring tool (fig. 1-left in foreground) allows users to write
and perform unitary tests to RoboComp software components. This tool allows
programmers either to include their own monitoring code or to use one of the
templates available to test HAL components, making it possible to display the
outputs of the tested component. In order to analyze the behavior of a compo-
nent or a group of interacting components, users can benefit from the logging
facilities of the loggerComp tool, which includes filters to display logs with differ-
ent criteria, such as date, priority or sender. Finally, the output of RoboComp
components can be recorded (and subsequently replayed) by the replayComp
tool. Thereafter, components can connect to the replayComp application and
obtain previously recorded data. This tool is really useful for off-line debugging,
that is, when there is no robot hardware available. Besides, RoboComp pro-
vides support for some well-known simulators, such as Stage and Gazebo (from
Player).

Despite the powerful component and configuration models provided by Robo-
Comp, its wide adoption could be compromised if it does not fit well the stringent
real-time and performance requirements of a DRE system. Fig. 2 shows some
results that confirm this statement. They correspond to some experiments that
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Fig. 2. latency and jitter results in RoboComp for different transport configurations

measure round-trip latency and jitter in a distributed scenario. This scenario
consist of two nodes in a local area network (gigabit ethernet), which are ex-
ecuting two components: a sender and a receiver. The results are obtained for
different configurations which use the underlying Ice communication protocols.
So called oneway and twoway configurations use the TCP transport protocol,
whereas the datagram configuration uses UDP. A comprehensive analysis on the
advantages and disadvantages of these transport protocols is beyond the scope
of this article, although it is surprising that the results are better for the twoway
mode, and it is also worth noting that TCP is not the best choice to implement
real-time distributed services (figs. 4 and 5 will give a closer look at these values).

The main conclusion is that the combination of the Ice proprietary RMI
protocol with TCP gives results that are worse than what it should be al-
lowed for very precise real-time configurations (especially for jitter whose values
in the experiment range between 77 and 337 microseconds). Thus, it becomes
clear that RoboComp needs an alternative middleware with real-time and high-
performance features.

3.2 The Data Distribution Service

The OMG published the Data Distribution Service for Real-time Systems stan-
dard in 2004. This specification focus on describing a middleware based on the
publish/subscribe model for distributing data with high-performance on real-
time environments, where systems must be predictable and deterministic. Since
its inception, the DDS has been used in defense and aerospace applications,
radar processes, naval combat management or air traffic control systems, among
others.

The DDS standard is composed of the Data-Centric Publish and Subscribe
layer (commonly referred to as DCPS) and by the DDS Interoperability Wire
Protocol (DDSI v2.1) [14]. The former defines the DDS architecture, partici-
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pants and standard API, along with some profiles which enhance its use [10].
The latter defines a new protocol which ensures interoperability across DDS
implementations from different vendors.

The publish/subscribe model implemented in DDS does not use a central
broker. Publishers and subscribers access to the so-called global space data to
exchange information, which avoids a single point of failure. Data in DDS are
defined as topics. Topics are described as type-safe data structures, which also
contain a key (to identify different topic instances) and an associated quality
of service. These QoS policies specify resource limits for delivery, liveliness or
reliability, among other features. Moreover, publishers and subscribers can also
have QoS associated, which must be compatible before a communication takes
place. As in other OMG specifications, the definition of topics is done using
an IDL (in this case, a subset of the CORBA IDL), which can be compiled to
primitives and data structures for specific programming languages.

After the increasing success of the DDS standard, the OMG is trying to
incorporate its main benefits to the Corba Component Model. Therefore, it is
now defining the so-called DDS4CCM specification [13] (now in beta 2), where
CCM will benefit from DDS features using special artifacts called connectors.
The connectors will overcome the intrinsic limitations of the CORBA IDL inter-
faces, which originally were intended to work with a one-to-one communication
model.

Regarding the availability of DDS implementations, there are a few commer-
cial products but also some open source ones, such as OpenSplice DDS from
Prismtech (LGPLv3 license) and OpenDDS from OCI (BSD-like license). The
former middleware is the most complete one in its free version (referred to as
Community Edition), which has support for the complete DCPS and the Inter-
operability Wire Protocol in C, C++, C# and Java. Therefore, we have selected
OpenSplice DDS in C++ to improve the RoboComp framework.

3.3 Mapping RPC/RMI concepts to DDS

In order to hide the DDS API and its communication model from developers,
we propose a methodology which maps existing RPC/RMI communication se-
mantics to their equivalent publisher/subscriber operations. First of all, we have
to emulate the RMI message exchange. A client request will be equivalent to
the publication of a topic instance (with a specific random key identifier). The
server (part of the component runtime environment) subscribes to this kind of
topic and i) executes the reception asynchronously, ii) invokes the appropriate
method of the component Worker instance with the input provided by the re-
ceived data and iii) prepares a response topic whether needed (for instance, if
the equivalent RMI operation returns a non-void type or if it contains output
parameters) and then publishes it using also the same key that was found in the
request. The client will wait for the response, which is perfectly identified by its
matching key value.

Table 1 enumerates our proposed mappings. For the sake of clarity we have
used a simplified notation that does not match exactly with the Ice and Open-
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RMI interface DDS request data type DDS response data type
[return type] operation(); data operation request { //only if return type!=void

long id; data operation response {
}; long id;

return type value;
};

[return type] operation(type param); data operation request { //only if return type!=void
long id; data operation response {
type param; long id;

}; return type value;
};

[return type] operation(out type param); data operation request { data operation response {
long id; long id;

}; [return type value;]
type param;

};
[return type] operation(type iparam, data operation request { data operation response {

out type oparam); long id; long id;
type iparam; [return type value;]

}; type oparam;
};

Table 1. Mapping RMI operations to DDS topics

Splice IDL grammar, and he symbols enclosed in brackets are optional. The
first column represents the four main types of method signatures (called opera-
tions), which are part of the interfaces defined in the Ice IDL file. The second
and third columns represent their equivalent DDS topics which implement the
emulated request/response protocol. As mentioned above, the response is not
always needed and, therefore, topics in the third column (and their associated
publish/subscribe operations) will not be used.

In order to obtain the required DDS topics, we have designed a new Ice IDL
to OpenSplice DDS IDL compiler. Fortunately, Ice has a modular compiler that
implements the Visitor pattern [4] to navigate through the abstract syntax tree
available with the IDL file. Our compiler makes extensive use of it. Until now, it
supports only a subset of the Ice IDL language (interfaces without inheritance).
This decision has been motivated by the usual interface descriptions found in
the existing repository of RoboComp components. However, a more complete
compiler to DDS is under development.

3.4 Implementation and discussion

Fig. 1 (right) has shown the development process of a RoboComp component.
Our proposed extension now includes DDS capabilities and is depicted in fig.
3, where dark boxes represent the files and modules that are modified. First
of all, we have extended the capabilities of the Ice IDL compiler in order to
generate a DDS IDL file that follows the mapping procedures described in table
1. Therefore, we obtain the appropriate definition of DDS topics which will be
the input to the OpenSplice IDL compiler to C++. The resulting files implement
the DDS publishers, subscribers and other data structures and procedures that
will work with our defined topics using the DDS API.
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Fig. 3. The improved component generation process with DDS

Our next modification affects the RoboComp code generation script, which
now needs to generate source code to implement the subscription and publication
of the request/response topics using DDS. From a developer’s point of view, the
new code is still backward compatible with existing RoboComp components, that
is, the Worker class can still use the traditional way of invoking remote operations
as client using any Ice Proxy. However, these Proxies have been extended to
include an extra method for every existing operation. These new methods share
the signature of the original ones, although their names incorporate the suffix rt
(real-time), which means that they will use our DDS communication mechanism
instead. Regarding the execution environment of the RoboComp module, the
main procedure activates the servant objects, but also includes the automatic
subscription to every request topic available with the DDS IDL.

Figs. 4, 5 and 6 show our experiment results after comparing communications
using the original Ice-based RoboComp RMI mechanism and using the new DDS
one for two scenarios: local (figures on the left) and distributed (figures on the
right). The experiments consisted of a client component using the middleware
facilities for sending messages (with different sizes) to a server component. This
server implemented an echo service that sent every message back to the client.
The middlewares were used with equivalent configurations: Ice with TCP and
two-way mode, and DDS with reliable and ordered delivery.

It is worth noting that figures 4 and 5 show how latency and jitter are
bounded and stable in the DDS case. In fact, latency is reduced to be less than
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Fig. 4. Latency measurements for RMI and DDS communications in RoboComp
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Fig. 5. Jitter measurements for RMI and DDS communications in RoboComp

29 microseconds for local communications and less than 128 in the distributed
scenario (with a mean of 105 microseconds). These are impressive results with
respect to their corresponding numbers for RMI. The results in the local scenario
are also justified by the use of shared memory as the interprocess communication
method in OpenSplice DDS. Therefore, we can conclude that every RoboComp
component that uses DDS now can be DRE-compliant. The same good results
are obtained for throughput in fig. 6, which also means that DDS uses the pro-
tocol with the lowest overhead in networked scenarios.
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Fig. 6. Throughput measurements for RMI and DDS communications in RoboComp

4 Conclusions and Future Work

This paper has described our experiences on improving an existing robotics
framework with real-time and high-performance features. Our main conclusions
are that robotic software modules can benefit from the recent Data Distribution
Service standard and from the emerging open source toolkits that implement
it, such as OpenSplice DDS or OpenDDS. After the improvements, we have
demonstrated how DDS middlewares allow the communication among robotic
components with low latency and jitter, but also with a throughput that outper-
forms the one obtained with the previous protocol for RMI. We have developed
a methodology that is little intrusive with respect to the existing IDL compilers
and RoboComp code generators and that guarantees backward compatibility
with previous deployed components. Besides, DDS now adds quality of service
features to the framework. We plan to work intensively on exploring and adjust-
ing these new DDS QoS features in order to understand which configurations
are better suited in the context of the robotics software.
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