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Abstract

Social robots are designed to interact and share their environments with humans while performing
daily activities. They need to build and maintain rich representations of the space and objects around
them in order to achieve their goals. In this paper we propose a framework for building model-based
representations of the space surrounding the robots and the objects nearby. The approach considers
active perception as the phenomena resulting from controlled interactions between different model-
fitting algorithms and a grammar-based generative mechanism called Grammars for Active Perception
(GAP). The production rules of these grammars describe how world models can be built and modified,
and are associated with the behaviours needed by the model-fitting algorithms in order to succeed.
Such descriptions can be used to compute the required actions to build consistent models of the
environment. The resulting behaviour seizes the a priori knowledge available to the robot, not only
to improve the modelling process, but also to guide exploration and visual attention. The models
generated using these grammars are attributed graphs that can contain geometric and other semantic
properties.

1 Introduction

Autonomous robot must be endowed with modeling capabilities in order to operate in human environments.
This fact has found deep support during the last years of research in mobile robotics, where localization
and mapping have captured much of the interest of the field. The mainstream approach has successfully
centered on the mathematical derivation of a solution to the simultaneous localization and mapping
problem (SLAM). This solution uses 3D points as the map construction material. Current research has
now diversified targeting problems such as the topological organization of large point maps.

In this paper we follow a model-based approach to the spatial modeling problem that assumes there is
certain amount of structured knowledge available that can be used to improve the perception process. This
knowledge takes the form of simple parameterized geometric primitives (e.g., cuboids or cylinders) and
compositions of them (e.g., tables or mugs) that are fitted to the sensed data through an active perception
process. The uncertainty that problems such as the limited field of view of cameras, occlusions, noise or

(a) Structured high-level model (node attributes are not
shown).

(b) Two-dimensional metric map in the right
hand side.

1



Figure 1: Organisation of the perceptive system and data flows.

limited sensor resolution introduce in the perception process can naturally be reduced by moving around
and changing the point of view.

We propose a framework in which perception uses the available knowledge of the structure of the
environment and enables robots to appropriately model its surroundings by taking the appropriate actions.
When the robot is given a task such as please, find the blue mug and bring it here it unfolds a series of
perceptive and motor processes that progressively model the key elements of its environment, constructing
a safe way towards the goal. The elements needed to satisfy the goal are perceived in order, following their
natural kinematic relationship (being supported by). The modelling of each new element is simplified by
using a context defined by the elements already modelled. When searching for a new object, this context
is subtracted from the incoming data, resulting in a crude segmentation of new potential candidates. One
candidate is selected, recognized and modelled, and the cycle starts again until the plan is finished. In
our example, the mug would be modelled by fitting a 3D shape on it so the arm controller can plan a
grabbing behavior.

The main advantages of this type of representation are: a) that it can be used before it is completely
fitted since the model is there from the beginning; b) that the model can easily adapt to environment
changes once it is built and c) that the abstract nature of the models facilitates the human-robot commu-
nication. The proposed framework also provides a formal means to achieve active perception through the
use of grammars. As depicted in Figure 1 it is composed of five subsystems:

• A set of bottom-up detectors that provide a shortcut among data and models. Once a model is
selected, model fitting can run more efficiently.

• A set of model-fitting algorithms.

• A formal grammar that can generate the set of possible perceptive and task plans. An effective plan
is opportunistically selected as time unfolds.

• A set of behaviors for low level control of the robot.

• An executive process that controls the interactions among the subsystems while moving towards the
goal.

The rest of the paper describes each of these subsystems in the context of the mug task mentioned
before and that requires the robot to build a representation of its environment like the one shown in
Figure 1. The experiment is run in a simulator to provide an initial validation of the idea.
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2 Grammars for Active Perception

Grammars are sets of rules describing how specific families of structured patterns can be incrementally
built. They are generally applied to strings but they can also be applied to graph-like structures such as the
one in figure 1.a. In our approach we use an extension of the concept of grammar, the so called Grammar
for Active Perception (GAP). It extends previous graph-grammar formalisms to allow for unambiguous
descriptions of graph transformations and, by associating behaviors to model transformations, it also
provides a means for perceptive planning. GAPs can be used to reason about the valid world model
transformations and about the actions required to perceive or modify specific world elements.

To design a GAP we have to define a working set of symbols. For this example task the symbols used
are:

S The start symbol.

N Represents the floor normal vector of the ground plane from the point of view of the camera.

P Contains the previous data and the distance from the camera to the plane, that is, the full plane equation.

F Contains the data of the P symbol and the yaw angle of the robot respect to one of the four walls. It can be thought as a plane
with orientation.

W, w For walls at unknown or known distance, respectively.

O For obstacles. These symbols contain their position with respect to the walls and its size.

T For tables. T symbols contain the position, size and height of the table.

M For mugs. The robot stores information about their color and size.

The set of rules describing how the world representation can be built is shown in Table 2. Rule 1 is
triggered when the robot perceives the normal vector of the floor plane. It substitutes S with N (which
has the normal vector as an attribute). Rule 2 has similar consequences but introduces the height of the
camera. Rule 3 is triggered when the room orientation has been successfully modeled and also substitutes
P by F, adding new information to it. The rule also includes new W symbols for the walls. Rules 4 and
5 substitute W by w when all the wall distances have been estimated. Rule 6 is triggered when the robot
detects and models an obstacle. Rule 7 is used when an object previously modeled as an obstacle is found
to be a table. Rule 8 is used to include new mugs in the model. As can be seen in table 2, each rule is
associated with behaviors that will help the detectors in providing the necessary information to trigger
the rules.

As introduced in ??, GAPs have interesting applications. The robot achieves bottom-up parsing by
monitoring the rules that can be potentially triggered and activating their corresponding behaviours and
modeling algorithms. This also leads to context-aware restrictions: since only valid modeling algorithms
are run, only valid transformations are introduced in the model. Covert perception is achieved by activating
detectors of objects that can not be introduced in the model in the moment but can help detecting other
objects. For example, the previous grammar can only insert mugs in tables. Thus, the table modeling
process can be triggered by a table detector or be forced by the detection of a mug. Action selection is
performed by the automata when an object detector is triggered but the robot may also choose to run a
specific behaviour when it has a specific goal that has to be met.

3 Model-fitting algorithms and bottom-up detectors

Model-fitting methods are being increasingly used for scene understanding. Despite they are generally
more robust to clutter and occlusion than bottom-up algorithms, they are extremely slower, especially
when the object to perceive is small and has to be found first. To overcome this drawback we use both
approaches in conjunction. Bottom-up detectors are used as attention-attractors to trigger model-fitting
algorithms when objects have to be localised before starting their corresponding modeling process.

Monte Carlo model-fitting algorithms perform stochastic searches within the space of valid models for
the most likely configuration of the parameters of the model given the input data. These approaches are
generally more robust than classic bottom-up ones but the search process makes them also much slower.
In order to accelerate the search we integrate bottom-up detectors to induce areas where the search
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ID Rule Behaviour

1 watchFloor

2 watchFloor

3 alignNextWall

4 alignNextWall

5 alignNextWall

6 lookForObstacles

7 approachObstacle

8 observeTable

Table 1: Graphical description of the grammar designed for the experiment.

should take place, which is known as Data-driven Markov Chain Monte Carlo [2]. In this experiment all
computations are supported by the data coming from a commercial RGBD sensor.

As indicated in section 2, the room is not modeled atomically but in different steps of two (pitch, roll),
one (height) and one dimension (wall distance) respectively –the last is repeated four times for each of
the walls–, which converges considerably faster than a seven-dimensional search. Moreover, it allows the
robot to adopt behaviours granting appropriate points of view depending on the element to perceive (i.e.,
the floor in the two first cases, the walls in the last case). Each search begins with an a priori model of
the room and is optimized using particle filters to fit the input data. The a priori values of the height and
orientation of the camera with respect to the floor are obtained using the known kinematic structure of
the robot. There is no a priori for the wall distances.

Obstacles and tables are different because their number and positions are not known. Thus, we
use a discriminative detector in order to hypothesize possible candidates and trigger the corresponding
behaviours and model-fitting algorithms needed to perceive tables. The detector uses the already available
room model to detect clusters of points from the RGBD sensor that can not be explained by the room model
(see figure ??). When a cluster is found, the automata includes an obstacle in the model and executes
an approaching behaviour to attain an appropriate point of view to run a model-fitting algorithm to fix
the obstacle or transform it into a table. A similar procedure is used when detecting mugs: the mug
detector subtracts the points that can be explained using the model leaving only noisy points and those
that correspond to mugs. The remaining point cloud is used to fit mugs to it.

4 Behaviours

Behaviours play an essential role in robot perception. In order to perceive the environment correctly,
robots have to attain favourable points of view of the parts they try to model. This must be achieved by
adopting the appropriate behaviours. In the experiment the robot can adopt four behaviors. The first
two are used for modeling the room:
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Figure 2: Environment used for the experiment.

• watchFloor The robot tries to localise an obstacle-free area of the floor. It is used to model the
normal vector of the floor or its distance from the camera.

• alignNextWall Used when modeling wall-to-robot distances and when the robot selects the main
orientation of the room. The robot navigates and directs its gaze towards the next wall to the right
and stands still waiting for the model-fitting algorithm to finish.

The remaining two behaviors are used to model the objects in the room.

• lookForObstacles This behaviour makes the robot wander in order to enable the obstacle detector
to do its job.

• approachObstacle Used to attain a favourable view of a specific obstacle and manage to fix the
obstacle as it is or transform the obstacle symbol into a table, and to fit mugs to the points not
explained by the model.

This small set of behaviors gives the robot the capability to model the room in which it is located,
and the obstacles, tables and mugs in it. To model new objects this set should be increased correspondly
as well as the grammar and model-fitting algorithms.

5 Experiment

This section describes the steps followed by the robot to achieve the goal Please, find the blue mug. The
experiment is run in a simulated environment in which noise can be added to recreate real world conditions
(see Figure 2).

The shortest plan is computed by the grammar engine as explained in [1] and is composed of the
following sequence of rules: (1,2,3,4,5,5,5,6,7,8). In order to execute a rule the automata always performs
the same tasks: a) activate the behaviour and detectors corresponding to the rule; b) activate the necessary
model-fitting algorithms when the behaviour succeeds; c) trigger the rule when the model is fitted. The
sequence of behaviours, detectors, model-fitting algorithms and rules triggered are shown in table 2.

6 Conclusions

We have presented a framework for active perception and the perceptive phenomena that can be achieved
using it. It has been also presented its application for modeling rooms, obstacles, tables and the mugs
that tables contain. The approach has been tested in a simulated robot environment with sensor noise
and error control in order to recreate real conditions.
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Behaviour Detectors Model-fitting Rule number
watchFloor plane normal 1
watchFloor plane distance 2
alignNextWall plane distance 3
watchNextWall plane distance 4
watchNextWall plane distance 5
watchNextWall plane distance 5
watchNextWall plane distance 5
lookForObstacles obstacleDetector obstacle sphere 6
approachObstacle table model 7
observeTable mug model 8

Table 2: This table shows some data
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