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Abstract This paper presents a method to reduce the time

spent by a robot with cognitive abilities when looking for

objects in unknown locations. It describes how machine

learning techniques can be used to decide which places

should be inspected first, based on images that the robot

acquires passively. The proposal is composed of two con-

current processes. The first one uses the aforementioned

images to generate a description of the types of objects

found in each object container seen by the robot. This is

done passively, regardless of the task being performed. The

containers can be tables, boxes, shelves or any other kind

of container of known shape whose contents can be seen

from a distance. The second process uses the previously

computed estimation of the contents of the containers to

decide which is the most likely container having the object

to be found. This second process is deliberative and takes

place only when the robot needs to find an object, whether

because it is explicitly asked to locate one or because it is

needed as a step to fulfil the mission of the robot. Upon

failure to guess the right container, the robot can continue

making guesses until the object is found. Guesses are made

based on the semantic distance between the object to find

and the description of the types of the objects found in each

object container. The paper provides quantitative results

comparing the efficiency of the proposed method and two

base approaches.

Keywords Active perception � Informed search �
Perception-aware planning

Introduction

When robots have to find an object and there is previous

knowledge-based information about its location, they can

leverage such information to look only in those specific

containers—e.g. juice bottles are found in fridges and shirts

in closets. Unfortunately, in real scenarios there is often

lack of such information, so robots usually inspect the

locations using non-informed strategies until the objects

are found (e.g. close locations first, randomly). These

strategies are usually slow and might frustrate future

domestic robot users. It would be desirable for domestic

robots to be able to acquire and use the necessary visual

information to reduce the time needed to find objects.

To guide the object search process, we propose esti-

mating the potential objects existing in each of the con-

tainers the robots see in their environments. The images

used for this purpose are acquired passively, using those

obtained when performing any previous task, whether or

not the robot was directly looking towards a container. The

images acquired are processed using machine learning

techniques, and descriptions of the potential estimated

objects found on them are stored to support future guess

queries. When looking for a mug, for example, it is not

necessary to have a previous mug detection in any of the

containers, and a glimpse of a spoon or a plate in a

table can be enough for the robot to consider such table first
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when looking for the mug. In particular, we build upon the

example of a domestic robot which is asked to find objects

in a set of tables located in two different rooms. When the

robot needs to find an object and the table where it should

be found is not known in advance, it uses the information

obtained while performing previous tasks (as shown in

Fig. 1) to try to minimize the time spent in the search

process. The container to inspect is selected based on the

semantic distance between the object to find and the

descriptions of the types of the objects detected in each of

the different containers (there is a separate content

descriptor for each container). For simplicity and without

loss of generality, even though the proposed system could

be applied to any other kind of container of known shape,

they are from now on assumed to be tables.

The integration of the proposal in a robotic architecture

enables the robot to generate plans and coordinate different

software modules in such a way that object discovery can

be part of more complex tasks. Although the system was

integrated in a particular architecture for the experiments, it

is architecture-agnostic.

The first of the two main contributions of the paper is

the design of a software module that suggests the most

likely location of an unknown object. The second main

contribution is the development of a planning domain

which allows to integrate the previously mentioned module

in existing robotic architectures to efficiently search for

objects.

The remainder of the paper is as follows: Sect. 2 pro-

vides a review of the current algorithms used for detecting

potential objects and other related works. The active search

planning domain and its integration in a robotic architec-

ture is described in Sect. 3. Section 4 describes how labels

are obtained as new images are acquired, how is the

description of the contents of the tables updated and how

the table to inspect is selected. The tests conducted,

comparing the guess success rate and the mean time spent

by the robot when approaching the correct table using

different methods, are presented in Sect. 5. The conclu-

sions drawn from the experiments are described in Sect. 6.

Related work

Impressive progress has been made on bottom-up object

recognition algorithms using images over the past few

years (Rusu et al. 2010; Lee et al. 2015; Redmon et al.

2016), specially thanks to the advances on deep learning

(He et al. 2015). Although these algorithms have a high

success rate when tested against the most common datasets,

their performance is not as good when working in real-

world scenarios, where objects may appear at a relatively

low resolution because of the distance and are often poorly

illuminated.

In real scenarios, objects are found in clutter, usually

next to each other. The use of attention processes such as

visual attention introduces a preprocessing step that helps

the robot focus its attention towards interesting parts of the

image in order to improve the object learning and recog-

nition task. Bottom-up attention mechanisms that are

designed to respond to salient areas of high contrast in

order to detect objects in highly cluttered scenes are often

proposed (Itti et al. 1998; Walther et al. 2005). Other more

recent approaches perform visual attention by training

different configurations of deep neural network models (Xu

et al. 2015; Canziani and Culurciello 2015; Mnih et al.

2015).

Classical visual search models can be divided into serial

and parallel models (Egeth 1966). Serial search models

classify objects one at a time (Sternberg et al. 1966) while

parallel ones process some or even all of them at the same

time. The feature integration theory (Treisman and Gelade

1980) proposes a parallel, preattentive first stage and a

serial second stage controlled by visual selective attention.

Also following parallel search processing, guided search-

based models direct focal attention to the most promising

parts of the visual field (Müller and Krummenacher 2006).

Wolfe and Gray (2007) combine information from top-

down and bottom-up processing of the stimulus to create a

ranking of items for attentional priority.1

Active vision approaches arose to cope with clutter and

to minimize the impact of other limitations found in real

environments (Aloimonos 1993). These approaches

actively direct the camera (or in general, the sensor being

Fig. 1 Robot Shelly looking at one of the tables

1 For more deep reviews of visual attention models from psycholog-

ical and neurobiological perspectives, refer to Rothenstein and

Tsotsos (2008), Carrasco (2011), Borji and Itti (2013) and Tsotsos

(2017).
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used) to optimize the usefulness of the sensory input. The

next best view (NBV) family of algorithms, first appeared

in 1981 (Connolly 1985), aims to estimate the best point of

view that the camera of an autonomous agent should take

to improve the images acquired while performing 3D

modelling or object recognition. Different approaches to

the NBV problem have been proposed. The effectiveness

of several NBV approaches are evaluated in Bissmarck

et al. (2015) in indoor and outdoor environments. Another

problem associated with NBV is deciding when to stop

proposing new points of view of an object of interest being

classified. Methods such as the one presented in Wallen-

berg and Forssén (2010) deal with this problem. They

generally use prior information of the objects to decide

whether to continue asking for more points of view or

ending with the classification of the object, giving up and

accepting the object as unknown.

Other research efforts such as our proposal have been

directed towards a step of the perception process previous

to actually perceiving the object: the estimation of the

location of an object sought. Solutions to this problem,

known as informed visual search, use prior information

collected by the robot to improve later search. The work

presented in Forssén et al. (2008) is the most similar work

to our proposal. To obtain the best viewpoint of the object

in search, they use a combination of an exploration beha-

viour that moves the robot towards unexplored areas, a

coverage behaviour that explores the environment with a

peripheral camera and a viewpoint selection behaviour, in

charge of selecting the proper viewpoint that contains the

searched object. Although it is very interesting, it has

certain limitations. Firstly, it only works with known

objects that have already been seen. Secondly, it was not

designed to be integrated in a cognitive architecture, and

the robot only knows the geometric location of the object

(e.g. the container in which the object might be located is

not known).

Other approaches estimate the approximate location of

objects by using RFID sensors and generic semantic rela-

tionships (Martinez Mozos et al. 2012). A work towards

extracting these semantic relationships is presented

in Gutierrez et al. (2015), where different images grouped

with room names are given to a machine learning algorithm

that learns in which kind of room to find each object. The

main limitation for applying this last technique in an

autonomous robot is that it would not differentiate between

two different rooms of the same type (e.g. the robot would

not have any preference regarding in which bedroom

should it look for a shoe). Even though semantic infor-

mation obtained using generic training is not useful to

differentiate between rooms (or any kind of object con-

tainer in general), it can still be useful when there are no

additional or recent data available to the robot.

Integration of an object oracle in a robotic
architecture

To perform household chores and communicate with

humans, domestic robots need to model the environment,

acquiring knowledge about each object such as its name,

use or appearance. This still represents an extremely

challenging goal that can only be addressed by experienced

research groups reusing already existing software.

Among other numerous pieces of software, to study how

robots can use passively acquired images to perform informed

visual search, we built on top of the active grammar-based

modelling (AGM) architecture (Manso et al. 2015, 2016).

The AGM architecture was chosen because it was the one in

use in the robot used for the experiments and it provides all

the required features. The module in charge of estimating the

best container to inspect, oracle from now on, can be inte-

grated in any other architecture as long as it has planning

capabilities and allows using hybrid models combining

symbolic and geometric information.

Although designed with perceptual issues in mind,

AGM is a general-purpose robotic architecture that can use

RoboComp (Manso et al. 2010) and ROS (Quigley et al.

2009) as the middleware connecting the modules that the

software of the robot is composed of. The AGM architec-

ture proposes communicating higher-level modules—

agents from now on—through a shared model with a

graph-like structure. This model combines symbolic and

metric information as necessary Manso et al. (2016) (see

Fig. 2), and is managed and monitored by an executive

module in charge of providing agents with a sequence of

actions that, if executed correctly, would take the robot to a

state where its goal has been achieved. Through coordi-

nated cooperation, the agents execute the steps of the plan

and make the corresponding changes in the world model so

that the executive can update the plan as the mission

advances. To fulfil its purpose, in addition to the model, the

executive module holds the mission of the robot and a

formal description of the physical and perceptual actions

that the robot can execute to modify its own world model—

world model grammar from now on. The actions of the

plan are executed by the agents and the outcome of their

execution is acknowledged by modifying the model.

Although agents can be composed of lower-level modules,

these modules cannot modify the AGM model. An over-

view of the AGM architecture is shown in Fig. 3.

Domain: node types and actions

The plan that a robot uses to fulfil its mission depends on

its domain knowledge (i.e. the actions that can be per-

formed by the robot) but also on the internal world
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model of the robot. Therefore, understanding the world

model of a robot is essential to understand how it works,

and AGM-based architectures are no exception. AGM

world models are hypergraphs (i.e. graphs where any

pair of nodes can be linked multiple times). AGM

models have the particularity that both nodes and edges

can have any number of additional attributes. These

attributes are used to encode metric information which is

not taken into account by the planner. Each node has a

unique identifier and a type which determines its

purpose.

In addition to other node types that are not relevant for

this paper, the models of the robot presented use the fol-

lowing node types: room, robot, object, imgObject and

additional node types to store node-specific properties,

robotSt and objectSt. The edges between the nodes repre-

sent symbolic or relationships. As an example, Fig. 2

shows part of one of these models. Edges labelled as ‘‘in’’

represent that one object is inside or over another object.

Edges labelled as ‘‘know’’ represent objects which are

known by the robot. Edges linking an object and their

status symbol represent dynamic properties of the objects

(e.g. whether or not they are reachable or being seen at the

moment).

The domain of the robot (i.e. the set of actions that can

be executed by the robot, along their preconditions and

consequences) is expressed using a grammar similar to

those used to define formal languages. These grammars are

sets of grammar rules that are used by the executive to

compute the plans to achieve the missions of the robot. The

rules used to proactively find coffee mugs will be described

in the following paragraphs. There are additional rules

designed to include mugs when the robot finds them by

chance, rules for perceiving other objects and rules for

other different activities such as human–robot interaction

or manipulation. In particular, five rules have special

interest:

– setObjectReach is used for getting close to objects

such as tables or mugs. See Fig. 4.

– changeRoom is used to make the robot change from a

room to an adjacent one. See Fig. 5.

– imagineMugInPosition is used to imagine a mug in

the most likely container so it can later be inspected

and confirmed or discarded. As shown in Fig. 6, it

generates an imgObject node associated with an already

existing container.

– verifyImaginaryMug is used to confirm that a previ-

ously imagined mug has been successfully modelled as

an actual mug. It basically changes the type of the node

associated with the imaginary mug from imgObject to

object. See Fig. 7.

Agents

As aforementioned, the actions and their corresponding

modifications in the model are carried out by a set of

software modules named agents. Depending on the current

plan of the robot each agent can be in charge of performing

an action. Generally the action to execute will depend on

the first action of the plan, but it can also depend on any or

Fig. 2 AGM models represent the world as understood by the robots.

The nodes of these graphs represent symbols. Each of them contains

two strings: the upper one is a unique identifier and the one in the

bottom represents the type of the node. Edges, which can be

interpreted as binary predicates, can represent any kind of symbolic

property. In this particular case, it is shown the model of a robot

which is stopped and—to the knowledge of the robot—is located in a

room with two more tables. Nodes and edges can hold string-to-string

mappings used to store geometric information

Fig. 3 The executive holds the mission of the robot, the grammar and

the current model. With each world model modification proposed by

any of the agents, the executive updates the plan correspondingly
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all the actions.2 Similarly, each agent can perform modi-

fications in the model, whether these are the result of the

action of the robot or an exogenous event. Exogenous

events are those which are not the result of an action of the

robot. For example, a ‘‘low battery’’ event would be

exogenous: robots cannot generally reason about how to

get to such state, and they can only detect it. Therefore,

depending on the task a robot has to deal with, different

agents will be active.

The following agents are used in the specific imple-

mentation of the architecture used for the experiments: a

navigation agent in charge of moving the robot; a local-

ization agent in charge of indicating which is the current

room where the robot is located and its specific coordi-

nates; a proprioception agent which updates the angles of

the joints of the robot in the model; an object agent in

charge of detecting and updating the position of the objects

seen; a human agent which includes the persons nearby in

the world model; a dialog agent which updates the mission

of the robot upon user request; and an oracle agent which

is the main contribution of the present paper. Figure 8

shows the architecture with the agents that were developed

for the robot.

When the robot needs to find an object the executive

provides the agents with the step sequence required to fulfil

the mission, which generally entails:

– imagining the object in its most likely position: actions

imagine \OBJ[ InPosition, where \OBJ[ de-

pends on the type of object to detect.

– reach the container where an object is expected to be

found: actions reachObject and, in case the container is

located in other room, changeRoom.

– inspect the container: actions verifyImaginary

\OBJ[ .

Actions related to navigation (reachObject and change-

Room) are implemented in the navigation agent, and those

related to object modelling (verifyImaginary \OBJ[ )

are implemented in the object agent. Actions imagine

Fig. 4 The action ‘‘setObjectReach’’ describes the preconditions to

make an object reachable (a) and how performing such action would

affect the internal world model (b). a Action ‘‘setObjectReach’’: LHS.
b Action ‘‘setObjectReach’’: RHS

Fig. 5 The action ‘‘changeRoom’’ describes the preconditions to

make the robot move from a room to another adjacent room (a) and
how performing such action affects the internal world model (b).
a Action ‘‘changeRoom’’: LHS. b Action ‘‘changeRoom’’: RHS

2 Let us assume that a robot located in a room r1 is supposed to

approach a table t1, located in room r2 to fetch a bottle of water for a

user. A possible plan could comprise, moving to room r2, then

approaching table t1 and finally detecting a bottle of water on it. Let

us also assume that another bottle of water gets into the field of view

of the robot as it moves towards room r2. If and only if the bottle of

water detector is activated before approaching table t1, it could be

detected and the plan could be optimized using such bottle instead.
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\OBJ[ InPosition are implemented in the oracle agent.

The next section is devoted to explaining how the oracle

agent works.

Design of the oracle agent

As aforementioned, two concurrent processes take place in

the oracle agent: one that passively generates descriptions

of the types of the objects detected in the containers and

another one that uses such information to select and indi-

cate in the model which container most likely contains the

object sought when the current plan involves imagining an

object. The descriptions of the contents of the containers

generated by the oracle are average semantic vectors which

take as input the list of objects detected by a deep neural

network (DNN). The remainder of this section describes

how contents are detected, how semantic vectors are gen-

erated and updated, and how the oracle performs the query

when it is asked to execute an imagine \OBJ[ InPosi-

tion action.

Cue acquisition

Estimating the potential objects in a container and their

corresponding probability is proposed as a passive process.

The information is obtained providing segmented images

to a deep learning model every time the robot has a good

point of view of a container which has not been seen

recently from a similar perspective. As illustrated in Fig. 9,

Fig. 6 The action ‘‘imagineMugInPosition’’ describes the precondi-

tions to imagine a mug (a) and how performing such action would

affect the internal world model (b). a Action ‘‘imagineMugInPosi-

tion’’: LHS. b Action ‘‘imagineMugInPosition’’: RHS

Fig. 7 The action ‘‘verifyImaginaryMug’’ describes the preconditions

to verify the existence of an imaginary mug (a) and how performing

such action affects the internal world model (b). a Action ‘‘verifyI-

maginaryMug’’: LHS. b Action ‘‘verifyImaginaryMug’’: RHS

Fig. 8 The figure shows the specific architecture implemented, the

executive along with the agents that were developed for the robot:

localization, navigation, proprioception, object, human, dialog and

oracle
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a first step called cognitive attention (CA) selects the

regions of interest (ROIs) in the image corresponding to the

containers by projecting the contours of the tables in the

model into the image. For each container seen, the ROI

defined by its contour is extracted to a separate image.

After selecting the container section of the image a cog-

nitive subtraction (CS) step is applied in order to segment

the set of regions potentially containing objects into sepa-

rate images. Finally, these object proposal images are fed

to a convolutional network for labelling purposes.

For the cognitive attention step to extract the ROI of the

container, the oracle needs to compute where the contour

of each container would be projected in the camera of the

robot. To this end, the oracle needs an estimation of the

size and shape of the container (the table in this case), its

pose from the frame of reference of the camera and the

focal length. Thanks to the use of AGM models (Manso

et al. 2016), all this information can be easily extracted (i.e.

assuming the robot has modelled its environment previ-

ously). Other valid alternatives to AGM can also be used,

as long as they allow storing the necessary information and

support computing the coordinates of the contour of the

container in the images of the camera of the robot (Milliez

et al. 2014; Foote 2013). The environment is assumed to be

modelled and updated by another module out of the scope

of the paper, since it is a basic requirement of a household

robot.

Even though some deep neural networks are able to

segment scenes, to detect objects the oracle uses its own

3D pipeline which does not require a DNN with segmen-

tation capabilities. Although this step increases the com-

putational resources required, thanks to the a priori

information available, the proposed combination of seg-

mentation and classification yields better results than a

CNN-based detector for small objects (Gutiérrez et al.

2017). This issue is well known, and it is explicitly men-

tioned by the authors of YOLO (Redmon et al. 2016). Once

the region of interest for the container is computed and

extracted, the objects within it are segmented as follows:

1. A method based on random sample consensus is used

to estimate the plane of the table using the point cloud

of the scene acquired with the RGBD camera of the

robot.

2. A convex hull is performed and all the points lying in a

threshold-based bounding box over it are considered

objects lying on the table (in the experiments presented

in the paper, those between 0.03 and 0.5 m).

3. Different point clouds corresponding to separate

objects are segmented using euclidean distance clus-

tering. For the experiments conducted, a threshold of

0.01 m was used.

4. Candidate object point clouds are transformed to

image coordinates and the image ROI corresponding

to the object candidate is segmented.

Once the segmentation of the objects is obtained, the cor-

responding parts of the image with potential objects are

provided to the neural network for labelling purposes. This

provides the system with a probability-ordered list of

potential labels from the segmented object image. To

obtain these labels, the robot uses deep residual networks

by He et al. (2015), trained on the generic ImageNet

dataset. It is a well-known network which scored first in the

ImageNet classification, ImageNet detection, ImageNet

localization, COCO detection and COCO segmentation

challenges. It contains up to 152 layers; however, its

authors claim it has a lower complexity than others. This is

mostly due to the fact that in a traditional approach layers

have to generate a whole desired output while layers on this

residual networks are only responsible for fine-tuning the

output from a previous layer by just adding a learned

residual to the input. Therefore, as shown in Fig. 10, the

FðxÞ þ x layer is adding in, element-wise, the input x to the

F(x) layer (being F(x) the residual). This makes the DNN

easier to optimize and more accurate as shown by their

results.

Fig. 9 Pipeline used to extract labels from the camera of the robot:

a the geometric model extracted from the semantic network and the

robot image is used to extract the region of interest; b then, the object

segmentation is fed to the deep neural network; c the result of this

process is a list of the possible objects detected in the figure and their

associated probability
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Semantic container vector representation

The deep neural network (DNN) provides the oracle agent

with a list of potential objects in the ROI of the object

segmented and their estimated existence probability. Since

the training is generic and false positives might appear, a

careful combination of these labels must be performed, so

only the label with the highest degree of confidence is used.

Even if the robot might not be able to work with all of the

objects embedded in the DNN model (e.g. it is not prepared

to manipulate heavy or tiny objects), it is still interesting to

be able to detect their existence. Since humans tend to

place related things in similar places, specially when

working in household environments, we take advantage of

likelihood of the coexistence of similar or related objects in

nearby locations.

In order to exploit this, the oracle manages the label

information through word vector representations, in par-

ticular the word2vec model by Mikolov and Dean (2013).

This model is generally used for learning vector repre-

sentations of words, called word embeddings. It uses a

corpus as an input and produces vectors of 300 dimensions

for each word as a result. In a first step, it uses the corpus to

create a vocabulary, and then, it learns the vector repre-

sentation of each word. The resulting word vector can be

used for different research purposes. One of the most

common ones is the use of the distance between word

vector representations as a measure of word semantic

similarity, because in the corpus used, similar words appear

close to each other. The model used was trained over a

Google News corpus with 3 billion running words and it

contains the vector representation of these words.

The first time the oracle inspects a container, whether or

not this inspection is intentional, it associates the list of

objects and their existence probabilities with that container.

All the labels are transformed into its vector representation

Vi and an average vector Ct is computed and associated

with the container as in Eq. 1, being n the number of labels

obtained for a container C in a point in time t. Note that

only one average vector is obtained per container. This

vector is the result of averaging the semantic

representations of all the labels assigned to the objects

found on that specific container.

Ct ¼
1

n

Xn

i

Vi ð1Þ

As the robot keeps moving, it will eventually see the

same container again, at point in time t þ 1, probably with

another point of view. In this case, a new average vector is

obtained using the new label representations V along with

the previous vector assigned to the container. The new

resulting vector Ct is then assigned to the container in

substitution of the old one (see Eq. 2).

Ctþ1 ¼ Ct þ
1

n

Xn

i

Vi

 !
=2 ð2Þ

Having an average vector representation of the labels

seen helps reinforce the labels that have been detected from

different views of a certain container. Since correctly

applied labels are seen repeatedly, they will have a higher

impact on the average vector value assigned to the con-

tainer. On the other hand, false positives are expected to be

isolated and not be repeated much on different views;

therefore, their impact on the average vector of the con-

tainer will be negligible. Only the label with the highest

certainty value obtained from the classifier is used to

compute the average vectors, so the distance from average

vector to the word2vec representation of labels is used as a

measure of likelihood of finding the object in that

container.

For a better visualization of the vector representations of

objects, t-SNE (Maaten and Hinton 2012) was used. It is a

dimensionality reduction technique well suited for the

visualization of high-dimensional datasets. Using this

technique, Fig. 11 shows a plot of the vector representa-

tions of labels obtained for the table containing office

objects. The figure shows that most of them are located

next to each other in the semantic search space.

Fig. 10 A building block of the residual learning process in the DNN

used in the experiments, proposed in He et al. (2015)

Fig. 11 A 2D plot of the vector representations of labels obtained for

a table containing office objects
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Querying oracle for object locations

The oracle agent provides the ordered list of most likely

containers for a certain type of object. When queried, the

first step is to find the vector representation of the object

label using the previously mentioned word2vec model

trained with a Google News corpus. After that, the oracle

computes the euclidean distance between this representa-

tion and the vector representation associated with each of

the containers, which mathematically corresponds to the

dot product of the vectors. A shorter distance means a

higher semantic similarity between the object sought and

the container. Therefore, the container with the shorter

distance is considered as the one having a higher proba-

bility of containing the object. The oracle returns the list of

containers ordered by this distance value.

Experimental results

A series of experiments were performed to test the possible

benefits of using the oracle when looking for objects. As

aforementioned in Sect. 2, to the knowledge of the authors

the informed visual search method proposed in Forssén

et al. (2008) is the closest alternative found in the litera-

ture. Although it is a interesting work, its aim differs from

the one of the oracles presented in this paper and has

several limitations that make impossible a fair comparison.

Because of this, the experiments compared the perfor-

mance of the robot when using the proposed system with

the performance without it. In particular, it was compared

with a non-informative criterion and another one mini-

mizing the time spent in the worst-case scenario. The non-

informative criterion is implemented by inspecting

tables in a random order. The third selection criterion uses

the position of the robot and the tables known by the robot

to estimate the order that minimizes the time spent by the

robot if required to inspect all the tables. It is implemented

as a travelling salesman problem where all nodes (tables)

are connected. For each of the three methods tested, the

experiments measured the success rate for the different

attempts and the time spent by the robot when looking for

objects. It is worth noting that the robot always succeeds in

finding the objects because there are a finite number of

tables in the environment (5). The goal is to succeed with

as few container inspections as possible. The success rate is

provided for the maximum of the five possible attempts.

The environment in which the experiments were run is a

two-room apartment with a total of five tables: three

tables in a room and the rest on the other. There were 65

objects distributed among the different tables during the

execution of the experiments. Although the proposed sys-

tem can be used with any kind of object container, in these

experiments we focused on the case of looking for objects

located in tables. The tables were filled with objects of five

different categories: a) hardware tools, b) desktop with a

computer, c) office objects, d) kitchen gear and e) toys.

See Fig. 12 for an overview of the experimental setting.

Although the object classifier is trained with generic

data and might not contain a specific label, the selection of

the container to inspect is carried on using the cosine

similarity of the corresponding word2vec vectors. Since

there are available trainings of word2vec which take into

account 3 billion words, it is highly unlikely that the word

used to name an object is not covered by word2vec. For

example, even if a user asks the robot to find a biscuit and

the classifier was trained using the term cookie, the system

will work properly because the semantic distance between

both terms is relatively small.

The robot used for the experiments is driven by an

omnidirectional platform and has an RGBD camera

mounted in a motorized head which is used for monitoring

the contents of the tables. Before running the experiments,

the robot wandered over the apartment for approximately

150 s to obtain initial labels corresponding to the objects on

each table. Since the robot continuously learns as it moves

and analyses the contents of the tables, the effectiveness of

the proposed oracle could improve while performing the

experiments. Therefore, to prevent the label detection

process from learning while doing the experiments (having

only learned the contents of the tables in the initial wan-

dering stage), the learning capability of the oracle was

disengaged before the experiments started. It is disengaged

Fig. 12 View of the geometric model of the experimental setting.

The highlighted tables contained: a hardware tools, b desktop with a

computer, c office objects, d kitchen gear and e toys
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only for testing purposes; under normal operation, this

capability would be always enabled.

To perform all the experiments under the same condi-

tions, they were not moved at all. Only the initial position

of the robot was changed after performing each search with

the three different methods. In the experiments the robot

was asked to find five objects from five different locations,

erasing the object from the memory of the robot after each

execution (otherwise the robot would not need to find the

object because it would be already known). Since this

paper only proposes a method to approach to the correct

table, taking into account the table inspection time would

be undesirable. To avoid this problem, once the robot

approaches the table, the oracle is automatically informed

about whether it made the right guess or it had to approach

a different table. The initial success rates measured after

performing the experiments (i.e. the probabilities of

choosing the right container in the first attempt) were of

0.36, 0.35 and 0.9 for the random, travelling salesman and

oracle-based solutions, respectively. Similarly, the average

time that the robot used to approach the correct table was

of 82.68, 61.0 and 26.13 s for the random, travelling

salesman and oracle-based solutions. It is worth noting

that, even though the random and travelling salesman

policies have similar same success rates, the latter is able to

approach faster the right table because it optimizes the

order in which tables are inspected.

Figure 13 contains four graphics showing how the suc-

cess rate evolved with the different methods as attempts

were made for all the objects considered. It can be appre-

ciated in the figure that the success rate evolves similarly

for the random and travelling salesman policies. On the

other hand, the success rate of the oracle was almost per-

fect, the only case in which the oracle failed was with the

stapler. Instead of looking for the stapler in the table cor-

responding to the office objects, the robot first looked for it

in the table corresponding to the hardware tools. This is

because the stapler was not detected as such while the robot

wandered around the apartment and, using word2vec, the

semantic distance from stapler to the objects found in the

table corresponding to the hardware tools is shorter than to

the one of the office objects. The table corresponding to the

office objects was the second choice of the robot. Unlike

the other approaches, which for some of the objects needed

5 attempts, 2 was the maximum number of attempts needed

by the robot to approach the right table.

Regarding hardware requirements, the oracle runs in an

Intel NUC with an i7-5557U processor, at a peak frequency

Fig. 13 Mean accumulated success for different objects, from left to

right of the random, travelling salesman and oracle policies. The

graphic on the rightmost position compares the general mean

accumulated success rates of the three different policies. The success

rate is provided for the five possible attempts needed

Fig. 14 Boxplots showing the time spent by the robot when

approaching the tables containing the different objects, from left to

right of the random, travelling salesman and oracle policies. The

boxplot on the rightmost position compares the times of the three

methods regardless of the objects
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of 94.11 Hz per request. However, since the robot moves at

a maximum speed of 0.3 m/s, when working in real con-

ditions its main loop is configured to work at 1 Hz. Run-

ning at a higher frequency does not provide much more

information and this allows saving computational resources

for other modules of the robot. Additionally, it must be

taken into account that the computational resources used by

the object detection process can be used for other purposes,

not only the oracle (e.g. simultaneous mapping and local-

ization Pillai and Leonard 2015).

To demonstrate the general utility of each of the meth-

ods, Fig. 14 provides boxplots for the time spent by each of

the methods for each of the objects. Although the random

and travelling salesman policies have similar success rates

(they do not even use the images acquired), the time nee-

ded by the travelling salesman is significantly shorter than

using the random policy. The proposed oracle system

clearly outperforms the other policies regarding the time

needed to approach the correct table.

Conclusions

The paper described the two processes that allow the robot

to reduce the time spent when looking for objects and how

these processes are integrated in a robotic architecture. The

first one is a passive process that generates and maintains a

feature vector describing the contents detected for each

object container. The second one, which is only triggered

when required by the plan of the robot, uses the informa-

tion generated by the first process to select which container

should be inspected. The results obtained from the exper-

iments show that the proposed oracle system has the

highest success rate (0.9) and requires the shortest time for

the robot to approach the correct table (26.13 s). The

problem addressed in this paper is relatively unexplored, so

two basic container selection criteria were used for com-

parison. Even though the travelling salesman approach

does not have a higher success rate than the random policy,

it allows performing the task in shorter times. This suggests

that it is worth conducting future research where the oracle

takes into account the cost of inspection of the containers.

Generic semantic information obtained using generic

training data or readily available semantic networks as

suggested by Martinez Mozos et al. (2012) or Gutierrez

et al. (2015) can be useful when there are no additional or

recent data available to the robot. Another reasonable

improvement would be to include attention mechanisms

enabling the robot to actively look the containers nearby

when the robot is moving and there is no other activity of

higher priority requiring the attention of the robot. Future

versions of the oracle system are expected to incorporate

these features.
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