
RoboComp: a Tool-based Robotics Framework

Luis Manso, Pilar Bachiller, Pablo Bustos, Pedro Núñez, Ramón Cintas, and
Luis Calderita?

Robotics and Artificial Vision Laboratory.
University of Extremadura, Spain

{lmanso,pilarb,pbustos,pnuntru,rcintas,lv.calderita}@unex.es

http://robolab.unex.es

Abstract. This paper presents RoboComp, an open-source component-
oriented robotics framework. Ease of use and low development effort has
proven to be two of the key issues to take into account when building
frameworks. Due to the crucial role of development tools in these ques-
tions, this paper deeply describes the tools that make RoboComp more
than just a middleware. To provide an overview of the developer experi-
ence, some examples are given throughout the text. It is also compared
to the most open-source relevant projects with similar goals, specifying
its weaknesses and strengths.

Keywords: robotics framework, software usability, programming tools

1 INTRODUCTION

Robotics software has to deal with very specific problems such as complexity,
code reuse and scalability, distribution, language and platform support, or hard-
ware independence. These problems should be addressed with appropriate soft-
ware engineering techniques and be transparent to the developer when possible.

Software complexity, from the developer point of view, is an important topic
because scalability decrease as complexity increases. The robotics community is
already aware of this fact and has steered towards component oriented program-
ming (COP) [1]. Despite the ostensible consensus regarding the use of COP,
many different approaches have been developed in order to deal with those
robotics specific issues.

We propose RoboComp, a robotics framework that focuses on ease of use
and rapid development without lost of technical features. RoboComp is based
on Ice[2], a lightweight industrial-quality middleware. Instead of spending large
amounts of time developing an ad-hoc middleware, it was found preferable to
reuse an existing one.

The most remarkable strength of RoboComp is the set of tools it is ac-
companied with. These tools make programming an easy and faster experience.

? This work has been supported by grant PRI09A037, from the Ministry of Economy,
Trade and Innovation of the Extremaduran Government, and by grant TSI-020301-
2009-27, from the Spanish Government and the FEDER funds.

2 RoboComp: a Tool-based Robotics Framework

RoboComp also provides a wide variety of components, ranging from hardware
interface or data processing to robot behavior. The web of the project gives ac-
cess to an extensive on-line documentation covering all the information users may
need. New components can be easily integrated with existing ones. Moreover,
RoboComp components can communicate with other widely used frameworks.
In particular, successful integration has been achieved with Orca2, ROS and
Player.

2 MAIN CHARACTERISTICS

Several robotics frameworks have been previously proposed to meet different
requirements (e.g. Carmen[4], JDE[5], Marie[6], Miro[7], MOOS[8], OpenRTM-
aist[9], Orca2[10], OROCOS[11], Player[12], ROS[13], YARP[14]). For a best
understanding of what RoboComp provides, this section describes its main char-
acteristics.

2.1 Middleware issues

Creating a new ad-hoc middleware would have involved a considerable amount
of work, not just to create the middleware but also to maintain it. We chose Ice
because it meets all the requirements we experimentally identified for a robotics
framework:

– Different optional communication methods (e.g. RMI, pub/sub, AMI, AMD).
– IDL-based, strongly typed interfaces.
– Good performance with low overhead.
– Efficient communication.
– Multiple language support (e.g. C++, C#, Java, Python).
– Multiple platform support (e.g. Linux, Windows, Mac OS X).

Orca2[10] is also based on Ice. However, RoboComp presents additional fea-
tures that complements the middleware layer: a) It provides a well-defined com-
ponent structure that ease software development; b) it includes several tools that
reduce the effort needed to create and maintain software components. One of the
main reasons why a new framework was created, instead of adopting Orca2, is
that it would involve imposing our component structure to previous users. Nev-
ertheless, although they are independent projects, using the same middleware
facilitates the interoperation between both frameworks. Therefore, RoboComp
and Orca2 users can share their components and benefit from the advantages of
both projects.

Despite other frameworks have developed their own communication engine
[6][12][13][14], we found preferable to adopt Ice. Besides its features and the time
saving, it allows a better interoperability with other frameworks. Moreover, Ice
has been used in various critical projects[3], so it can be considered very mature
because of the extensive testing it has passed.

RoboComp: a Tool-based Robotics Framework 3

2.2 Tools and classes

Two of the aspects in which RoboComp extends Ice are the tools and the nu-
merous set of classes it is equipped with. The set of tools is what enhances
user experience, making easier to develop and deploy complex systems. They
are deeply described in section 3. The set of classes comprises different issues
related to robotics and computer vision such as matrix computation, hardware
access, Kalman filtering, graphical widgets, fuzzy logic or robot proprioception.

Among the different available classes, the robot proprioception class, which
we call InnerModel, plays an important role in robotic software. It deals with
robot body representation and geometric transformations between different ref-
erence frames. InnerModel is based on an XML description of the robot kine-
matics read from file. In this file, the transformations nodes (joints and links)
are identified and described. InnerModel also provides different methods to es-
timate projections and frame transformations. Unlike other frameworks such as
[13], RoboComp does not offer a separate component for such functionality. This
decision was taken in order to reduce both, software complexity and latency. In-
deed, the memory overhead of replicating the same object is negligible.

2.3 HAL characteristics

Component oriented programming frameworks for robotics provide an effective
way to keep software complexity under control. However, most of them have
ignored one of the most important contributions of Player[12]: the idea of a
robotics hardware abstraction layer (HAL). We think this idea is extremely im-
portant for code reuse and portability. All sensors and actuators of the same
type can provide a common interface as long as they do not have very specific
features. When possible, it is preferable to use the same interface: a) different
users, researchers, or companies can share their components regardless of the un-
derlying hardware, b) it reduces the impact of hardware updates, c) it prevents
software deprecation [14].

Since it is possible to find hardware that does not fit the standard interface,
RoboComp does not force the use of the proposed interfaces, just recommends
it and emphasizes its benefits. Currently, RoboComp has defined the following
HAL interfaces: Camera, DifferentialRobot, GPS, IMU, JointMotor, Joystick,
Laser and Micro.

2.4 Component structure

In order to ease development, a framework must provide a well-defined compo-
nent structure. It helps users to understand which are the necessary code ele-
ments as well as the required links among these elements that lead to a correct
deployment.

The skeleton of RoboComp components (figure 1) is composed of three main
elements: the server interface, the worker and the proxies for communicating
with other components. The worker class is the responsible of implementing

4 RoboComp: a Tool-based Robotics Framework

the core functionality of each component. The server interface is a class derived
from the Slice (Ice IDL) definition interface, which implements the services of the
component. These services are generally handled by interacting with the worker
class. Since delays are highly undesirable, both in the interface and in the core
class, they run in different threads. Proxies are also of remarkable importance
within a component. These, which are usually owned by the worker, are instances
of auto-generated classes that provide access to other components. Components
also include a configuration file where all the operational and communication
parameters are specified. Using this configuration, the main program makes the
necessary initializations to start the component.

Fig. 1: General structure of a RoboComp component.

Additionally, components may implement a common interface named Com-
monBehavior. This interface provides access to the parameters and status of the
component and allows changing some aspects of its behavior at run time (for
example, the frequency of its processing loop). This interface can be used to dy-
namically analyze the status of a component, providing a means of determining
wrong configurations or potential execution errors.

3 TOOLS

A good robotics framework should not be just a bag of middleware features.
Programming software for autonomous robots also involves other issues such
as ease of use or readiness for an agile software development lifecycle. Thus,
RoboComp is equipped with different tools that complement the middleware
layer.

3.1 componentGenerator

Using a well-defined structure, the process of creating the skeleton of new com-
ponents can be automated. Thus, to save the programmer from this tedious task,
RoboComp includes a component generator tool. The component generator frees
the programmer from middleware issues. These code pieces are automatically

RoboComp: a Tool-based Robotics Framework 5

generated, so the programmer does not even have to read the whole component
code. Our experience with new RoboComp users shows the great benefits of
using this tool.

As an example of how to develop interacting RoboComp components using
the componentGenerator tool, it is shown the source code of two components
that communicate to compute the addition of two numbers. This example shows
the few lines of code a RoboComp user has to write. The listings shown below
correspond to the source files that should be modified by the programmer to
add the desired behavior to both components. The client component reads two
numbers, asks the server for the result of the addition of those numbers and
prints the result. The server waits for client requests and computes the addition
of numbers when it is requested to.

Listing 1.1: worker.cpp in the client side

1 #include "worker.h"
2
3 Worker :: Worker(RobolabModAddTwoIntsServer :: AddTwoIntsServerPrx

addtwointsserverprx , QObject *parent) : QObject(parent){
4 addtwointsserver = addtwointsserverprx;
5 connect (&timer , SIGNAL(timeout ()), this , SLOT(compute ()));
6 timer.start(BASIC_PERIOD);
7 }
8
9 Worker ::~ Worker (){}

10
11 void Worker :: compute (){
12 int a , b, res ;
13 cin>>a; cin>>b;
14 res = addtwointsserver−>addTwoInts(a ,b) ;
15 cout<<”a+b=”<<res<<endl ;
16 }

The listing 1.1 shows the only source file that should be modified in the client
component. Remaining files of the component are not shown since their code is
auto-generated and do not need to be modified. In listing 1.1, only the highlighted
lines are written by the programmer. Lines in gray are auto-generated. The line
in brown (line 14) shows the sentence invoking the remote method on the server.

Listing 1.2: AddTwoIntsServer.ice

1 #ifndef ADDTWOINTSSERVER_ICE
2 #define ADDTWOINTSSERVER_ICE
3
4 module RobolabModAddTwoIntsServer{
5 interface AddTwoIntsServer{
6 int addTwoInts(int a, int b) ;
7 };
8 };
9

10 #endif

Listings from 1.2 to 1.4 are the source files of the server component that have
to be modified by the programmer in order to add the specific functionality. As
in the listing 1.1, lines written by the programmer are highlighted.

6 RoboComp: a Tool-based Robotics Framework

Listing 1.2 is the Slice definition, where the programmer has to specify the
services that will be provided to other components. Listing 1.3 shows the server
interface. It is the implementation of the class derived from the Slice definition
that handles client requests. Besides the processing loop, the worker class (listing
1.4) includes the final implementation of the core of the component. As it can
be observed in this example of server-component development, the programmer
only has to include those lines related to service implementation without taking
into account low-level issues.

Listing 1.3: AddTwoIntsServerI.cpp

1 #include "AddTwoIntsServerI.h"
2
3 AddTwoIntsServerI :: AddTwoIntsServerI(Worker *_worker , QObject *parent)

: QObject(parent) {
4 worker = _worker;
5 mutex = worker ->mutex;
6 }
7
8 AddTwoIntsServerI ::~ AddTwoIntsServerI (){}
9

10 int AddTwoIntsServerI :: addTwoInts(int a, int b, const Ice:: Current &) {
11 return worker−>addTwoInts(a ,b) ;
12 }

Listing 1.4: worker.cpp in the server side

1 #include "worker.h"
2
3 Worker :: Worker(QObject *parent) : QObject(parent){
4 mutex = new QMutex;
5 connect (&timer , SIGNAL(timeout ()), this , SLOT(compute ()));
6 timer.start(BASIC_PERIOD);
7 }
8
9 Worker ::~ Worker () {}

10
11 void Worker :: compute () {}
12
13 int Worker :: addTwoInts(int a, int b) {
14 return (a + b) ;
15 }

Due to the use of a well-defined component structure, it is easier to create
code generation or modification scripts. An example of this advantage is ad-
dProxies. This tool allows the programmer to automatically modify a previously
created component including all the middleware-related code that is necessary
to connect to new interfaces.

3.2 managerComp

Components are independently executed programs that interact with each other.
They can be executed manually, but when a system contains more than a few

RoboComp: a Tool-based Robotics Framework 7

Fig. 2: Graphical interface of the managerComp tool.

components, it becomes hard to manage. In order to make this process easier, a
component manager, managerComp, has been developed (figure 2).

This tool allows users to graphically build and run a system in an intuitive
way: a) components located within a host list are automatically found; b) com-
ponents are included in the system by using a simple drag&drop operation; c)
component dependencies are specified drawing arrows connecting nodes of the
system graph (see Graph View tab of figure 2); d) components can be start-
ed/stopped by simply clicking the corresponding node of the graph view. This
tool also facilitates system execution: when the user starts a component, all its
dependencies are automatically satisfied. All these operations can be performed
for components in both, local and remote hosts.

Moreover, managerComp can be used not only to manage local or remote
components, but also to achieve certain level of introspection. As it was ex-
plained in section 2.4, components may optionally implement the common in-
terface CommonBehavior. The manager tool uses this interface in order to give
visual access to the parameters of the components. This is useful to detect wrong
configurations or even to change operational attributes. Thanks to this feature,
the manager tool can be used to help users diagnosing potential errors which
would otherwise be harder to detect.

3.3 monitorComp

Developing new components may involve the application of a test process to
evaluate its operation. Without a specific tool, testing a component entails the
creation of another component connecting to the new one in order to check its
functionality. To facilitate this test process, RoboComp includes monitorComp, a
tool for component connection and monitoring. This tool allows the programmer
either to include custom monitoring code or to use one of the templates available
to test HAL components.

8 RoboComp: a Tool-based Robotics Framework

monitorComp provides a graphical interface that helps the programmer to
carry out the component test process in an easy way. The first step is to connect
to the corresponding component. The programmer has to indicate the endpoint
of the component as well as its Slice definition file. Once the connection data is
introduced, the next step is the insertion of the monitoring code. The language
used for writing this code is Python. It allows to minimize the size and the
complexity of the testing code. Once the test code is written, monitorComp can
run tests without any user input. All this information can also be read from file.

3.4 replayComp

The replayComp tool (figure 3) records the output of a set of components in order
to subsequently emulate their roles. During emulation, it can run at the desired
speed or manually step by step. This feature is extremely useful for debugging
purposes: if the inputs are the same, the behavior of programs should also be
the same. Thus, it is very helpful when trying to reproduce errors.

Fig. 3: Graphical view of replayComp.

This tool can run in two different modes: capture and replay. In capture mode,
replayComp can connect to different components and record their outputs. Its
output file can then be transparently used in a replaying stage as input for other
components (i.e. components reading data from replayComp will not be able to
differentiate replayComp from real components). This way, it enables software
development when no robot is physically available.

Currently, replayComp supports all the HAL component interfaces out of the
box. Besides, the set of components that replayComp can record and replay can
be extended by writing small Python scripts that can be included in this tool as
plugins.

RoboComp: a Tool-based Robotics Framework 9

3.5 Simulator support

A replay component is very useful for debugging software that does not need the
robot to be active. However, when debugging active robot behaviors, a replay
component is not enough. With a real robot, reproducing the same software
behavior several times is a useful but very difficult task. Additionally, at initial
phases of component development, it can be very helpful to test its operation
considering ideal conditions, instead of a noisy real environment. In order to meet
these conditions, a robotics simulator seems a very adequate tool. Therefore,
RoboComp includes support for Stage and Gazebo, two widely used open-source
2D and 3D robot simulators.

In order to make the use of the simulator transparent for the software, the
simulator support has been included by extending the HAL components. As a
result, higher-level components do not need any change to run whether on the
simulator or on a real robot.

3.6 loggerComp

This tool is an optional standard output alternative designed to analyze the exe-
cution of components and their interactions. It provides a graphical interface to
display the information of interest, allowing the user to filter by: type, compo-
nent, time stamp, source code file and line of code. In order to use loggerComp,
components only have to include the loggerComp proxy (which can be automat-
ically done through the addProxies utility) and use the provided helper class
qLog.

4 FRAMEWORK COMPARISON

Throughout this paper, different robotics framework features have been dis-
cussed. Depending on the task, robots may have to use a particular platform
or programming language. Different communication methods may also be very
interesting features in order to fit to the different interoperational requirements
and communication patterns. Finally, due to the complexity of the problems to
solve, the toolset has been proved to be one of the most remarkable character-
istics of a robotics framework. In order to provide a global view of the features
and benefits of RoboComp, the rest of this section presents a comparison with
the most relevant frameworks.

Table 1 shows the license, supported platforms and programming languages
of the different frameworks. Note that both RoboComp and Orca2 support a
wide variety of possibilities derived from the use of the Ice middleware.

Table 2 shows the middleware used by the different frameworks and some of
its associated features. Those frameworks providing an IDL-based strongly typed
interface are usually preferable: they are easier to understand and, therefore, re-
duce the possibility of programming errors. In RoboComp and Orca2, the Ice
compilation tools are used in order to convert IDL interfaces into code of specific

10 RoboComp: a Tool-based Robotics Framework

Table 1: Middleware general aspects

Framework License Supported Programming
Platforms Languages

Carmen GPL Linux Windows C C++ Java Python

Marie LGPL Linux C C++

Miro GPL Linux C C++

MOOS GPL Linux Mac OS X C++ Matlab

OpenRTM EPL Linux Windows FreeBSD C++ Python Java

Orca2 LGPL/GPL Linux Windows Mac OS X C++ C# Python PHP
Android iPhone Ruby Java Objective-C

OROCOS LGPL/GPL Linux Windows C++

RoboComp GPL Linux Windows Mac OS X C++ C# Python PHP
Android iPhone Ruby Java Objective-C

ROS BSD Linux Windows C++ Python Octave Lisp

YARP GPL Linux Windows QNX C++ Java Ruby Python Lisp

programming languages. Frameworks using CORBA IDL are also equipped with
similar tools. The remaining frameworks do not include any IDL description fa-
cilities. Regarding the communication methods, Ice-based frameworks provide a
good variety of both synchronous and asynchronous communication mechanisms.
This feature allows the programmer to select the most suitable component in-
teraction method regarding to their operation requirements.

Table 2: Networking and API

Framework Middleware Comm. Methods IDL

Carmen IPC pub/sub query/response No IDL

Marie ACE data-flows (socket-based) No IDL

Miro ACE+TAO sync/async client/server CORBA IDL

MOOS custom pub/sub No IDL

OpenRTM ACE pub/sub query/response CORBA IDL

Orca2 Ice RPC, AMI, AMD, pub/sub Ice IDL

OROCOS ACE commands, events, methods, CORBA IDL
properties, data-ports

RoboComp Ice RPC, AMI, AMD,pub/sub Ice IDL

ROS custom pub/sub query/response No IDL

YARP ACE asynchronous data-flows No IDL

Table 3 shows the tools provided by the reviewed frameworks. Text means
that the framework provides a console-based tool, gui corresponds to a graphical

RoboComp: a Tool-based Robotics Framework 11

Table 3: Tools

Framework Code Gen. Manager Replay Simulator Log Monitor

Carmen no no gui custom 2d gui no

Marie no no no stage gazebo no no

Miro no no no no gui no

MOOS no text gui uMVS gui no

OpenRTM gui gui no stage gazebo gui no

Orca2 no no gui stage gazebo no no

OROCOS no text no no no no

RoboComp gui gui gui stage gazebo gui gui

ROS partial (text) text gui stage gazebo gui gui

YARP no gui no icubSim text no

user interface, and no to the unavailability of a tool. Column ’code gen.’ repre-
sents the availability of a code generation tool. Despite RoboComp, OpenRTM
and ROS provide this facility, only RoboComp and OpenRTM produce ready-
to-use code: the ROS roscreate pkg tool creates the directory tree structure of a
ROS package as well as the necessary files for compilation, however it does not
deal with source code generation. In addition, RoboComp provides a tool for
code modification that allows adding new communication interfaces to a previ-
ously written component. Column ’manager’ represents the existence of an easy
to use and specific tool to deploy and inspect the status of the deployed compo-
nents (Orca2 uses IceGrid to deploy components but it is not framework specific
or user friendly). Columns ’replay’, and ’log’ represent the availability of tools
for component replaying and for logging messages, respectively. The ’simulator’
column lists the simulators the different frameworks provide connection to. Al-
lowing components to work with a simulator without even changing the code
is a extremely useful feature. Thus, RoboComp provides a completely transpar-
ent use of Stage and Gazebo, two well-known robot simulators. The ’monitor’
column represents the availability of a tool to monitor the information that a
component is working with, not just its status (i.e. images of a camera or the
pose of a robot platform). Both ROS and RoboComp have such tool. However,
monitorComp is more advanced than the tools ROS is equipped with: rxbag has
a plugin system that allows users to display new types of data but it can only
work with off-line data; rxplot works with on-line data but only with a few data
types. monitorComp provides both features.

On the basis of this comparison, we think that RoboComp has a remarkable
set of technical and user-oriented features that make it an outstanding robotics
framework. However, we are aware of the big effort that would involve for new
users to migrate their software from a framework to another. Thus, the on-line
documentation of RoboComp describes the procedure to achieve interoperation
with Orca2 and ROS, two of the most widely used frameworks in robotics.

12 RoboComp: a Tool-based Robotics Framework

5 CONCLUSIONS AND FUTURE WORKS

This paper has described RoboComp, a tool-based robotics framework, empha-
sizing the goals it intended to meet and the design decisions that have been
made. RoboComp stands up in the comparison in several aspects such as ease
of use, portability, language support or its toolset.

Due to the big efforts made by the scientific community, robotics frame-
works are improving quickly. Despite RoboComp improves developer experience
in comparison to other frameworks, enhancements are already being made: new
features, new tools, or more introspection capabilities are under way.

References

1. J. He, X. Li and Z. Liu. Component-based Software Engineering: the Need to Link
Methods and their Theories. Proc. of ICTAC 2005, Lecture Notes in Computer
Science 3722, pp. 70-95, 2005

2. M. Henning and M. Spruiell. Distributed Programming with Ice. 2009.
3. ZeroC. ZeroC Customers, http://zeroc.com/customers.html.
4. M. Montemerlo, N. Roy and S. Thrun. Perspectives on Standardization in Mobile

Robot Programming: The Carnegie Mellon Navigation (CARMEN) Toolkit. Proc.
of International Conference on Intelligent Robots and Systems, 2003.

5. J. M. Cañas, J. Rúız-Ayúcar, C. Agüero and F. Mart́ın. Jde-neoc: component ori-
ented software architecture for robotics. Journal of Physical Agents, Vol. 1, No. 1,
pp 1-6, 2007.

6. C. Côté, Y. Brosseau, D. Létourneau, C. Räıevsky and F. Michaud. Using MARIE
for Mobile Robot Component Development and Integration. Software Engineering
for Experimental Robotics, Springer, pp. 211-230, 2007.

7. H. Utz, G. Mayer, U. Kaufmann, and G. Kraetzschmar. VIP: The Video Image
Processing Framework Based on the MIRO Middleware. Software Engineering for
Experimental Robotics, Springer, pp. 325-344, 2007.

8. P. Newman. MOOS - Mission Orientated Operating Suite. Massachusets Institute
of Technology, Dept. of Ocean Engineering, 2006.

9. National Institute of Advanced Industrial Science and Technology (AIST). RT-
Middleware: OpenRTM-aist. http://www.openrtm.org/, 2010.

10. A. Brooks, T. Kaupp, A. Makarenko, S. Williams and A. Orebäck. Orca: A Com-
ponent Model and Repository. Software Engineering for Experimental Robotics,
Springer, pp. 231-251, 2007.

11. H. Bruyninckx. Open Robot Control Software: the OROCOS project. Proc. of In-
ternational Conference on Intelligent Robots and Systems, pp. 2523-2528, 2001.

12. B. Gerkey, T. Collet and B. MacDonald. Player 2.0: Toward a Practical Robot
Programming Framework. Proc. of the Australasian Conf. on Robotics and Au-
tomation, 2005.

13. M. Quigley, B. Gerkey, K. Conley, J. Faust, Tully Foote, Jeremy Leibs, Eric Berger,
Rob Wheeler and Andrew Ng. ROS: an open-source Robot Operating System. ICRA
Workshop on Open Source Software, 2009.

14. P. Fitzpatrick, G. Metta and L. Natale. Towards Long-Lived Robot Genes. Journal
of Robotics and Autonomous Systems, vol. 56, num.1, p. 29-45, 2008.

