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Abstract. Robot navigation and manipulation in partially known in-
door environments is usually organized as two complementary activities,
local displacement control and global path planning. Both activities have
to be connected across different space and time scales in order to obtain
a smooth and responsive system that follows the path and adapts to the
unforeseen situations imposed by the real world. There is not a clear
consensus in how to do this and some important problems are still open.
In this paper we present the first steps towards a new navigation agent
controlling both the robot’s base and the arm. We address several of
theses problems in the design of this agent, including robust localization
integrating several information sources, incremental learning of free nav-
igation and manipulation space, hand visual servoing in camera space to
reduce backslash and calibration errors, and internal path representation
as an elastic band that is projected to the real world through measure-
ments of the sensors. A set of experiments are presented with the robot
Ursus in real and simulated scenarios showing some encouraging results.
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1 Introduction

Robot indoor navigation and manipulation are crucial components of current
autonomous robot control architectures. As other complex modules that form
part of these architectures, navigation and manipulation are usually decomposed
in several loosely coupled elements that form a distributed system. Typical nav-
igation elements are collision avoidance, environment perception, (re)planning
of safe optimal paths and (re)localization. One challenge in the design of these
architectures is the ”gap” problem, that arises when two different elements have
to share enough context as to take proper informed decisions. A typical example
would be the gap between the local collision controller and the path planner.
Another one is the gap between the (re)localization algorithm and the environ-
ment perception element, when a moving human crosses in front of the robot,
or when a new structural element appears in the environment.



Different solutions have been proposed to this problem, mainly to specific
versions of it. One of the best known ideas is the concept of elastic bands,
introduced by [1]. An elastic band is a theoretical construction obtained by a
path planner that gets grounded to the real world by means of the interaction
with a range sensor. The band works as a glue filling the gap between the internal
representation of the path and the constraints imposed by the world physics. The
path could be ”"broken” by a human passing by and restored afterwards. The
local controller only ”sees” a small perturbation that might involve a change in
speed. In this paper we present ongoing work on the design of a new navigation
and manipulation agent for the RoboCog architecture, that is based on the idea
of elastic bands. Figure 1 shows a schematic representation of the robot in a
navigation task that ends with the manipulation of the cup on the table.
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Fig. 1. Schematic view of a robot in a BringMe(x) task showing representing the free
space for base navigation and manipulation. Dotted line is the planned path partially
smoothed by laser projecting forces. Knowlegde of obstacles provides localization in-
formation.

Following these ideas, we will address several problems in the design of a new
manipulation and navigation agent that will replace our current technology. We
will describe improvements for indoor localization, lifelong free space learning
and manipulation control with poorly calibrated and backslash mechanical arms.
These three issues are crucial to achieve the mid-term goal of having a reliable
BringMe(X) skill in the robot. There other elements necessary to accomplish this
endeavor but they are discussed elsewhere [2] [3]. The algorithms described here
are based on a shared representation of the robot and the environment. The dif-
ferent software components can access this structure to share and become aware
of what other modules are doing. We review now work done in the elastic band
concept and in visual servoing, since those are the main theoretical motivations
in this paper.

Elastics bands were introduced by Quinlan and Kathib [1] as a method to
close the gap between path planning and real-time collision avoidance. The tech-
nique has not received too much attention in the robotics community, maybe due



to the independent interest on more specialized methods of local control and path
planning. Later on an extension of the idea was introduced as elastic strips to
cope with robots with many degrees of freedom|[4]. All DOFs of the manipulator
where included combining obstacle avoidance with desired posture behavior. A
last generalization to the original idea was published as elastic roadmaps [5] to
include planning in the loop.

When there are unmodeled misalignments and backslash in a low cost robotic
arm, the place where the hand will get and the place that the camera is select-
ing, will not match. One elegant way to solve this problem was described by
Hutchinson [6]. The idea is to bring the hand and the target to the camera space
and perform a visual control loop there minimizing the observed visual error.
The process can be shown to converge under mild conditions. The theory comes
form visual servoing, a mature discipline originated in the control arena that
has spread many new research lines and applications. The original work of [7]
was followed by many others [8] [9] [24] [10] and also in different areas such as
tracking of unknown objects [11] or binocular heads [12].

The rest of the paper describes the overall system and each of the problems
and improvements introduced in the architecture. A final section discusses two
experiments involving the robot Ursus that validate the choices made here and
the way they have been implemented and integrated.

2 Overview of the System

The navigation agent proposed here is being built as part of the robotics cognitive
architecture RoboCog [13] [2][3]. The overall goal is to integrate navigation and
manipulation in a common framework so more complex tasks can be handled
through body, head and arm coordinated movements. In this paper we will focus
on the first steps of the design of the agent, describing localization, learning of
free space, path planning, path execution and trajectory control of the arm. Each
part is described as an improvement over their previous versions in RoboCog. We
have identified important limitations in each one and introduced the necessary
changes to solve the existing problems. From the point of view of the software,
the complete agent is being built using the robotics framework RoboComp [14].
Each functionality is implemented as a set of interconnected components, many
of which are shared among the others.

2.1 Internal Representation of Space

In RoboCog, the robot and its environment is represented as a graph I = (N, E),
also called InnerModel. The nodes in I correspond to parts of the robot and
to elements in the world. They belong to one of the following types N —
{Robot, Joint, Laser, IMU, RGBD, Object, Mesh}. The edges in I are rigid eu-
clidean transformations linking the nodes and represented as 4x4 homogeneous
matrices. The nodes can be extended with a list of < attribute, value > pairs
so they can be annotated with semantic information encountered during robot



operation. In building the new Navigation agent, we have extended the initial set
of types with a new one, named FreeSpace. This type defines a graph G = (N, E)
representing what the robot believes about its free configuration space. We now
define separately the C-space of the robot base and the arm. Let’s as B € R? be
the base’s C-space in which orientation is ignored, and A € R” the C-space of
the arm. From them we can define two free configuration spaces, By = B/Clps
for the displacement of the base, ignoring orientation, and Ay = A/Cops for the
movement of the arm. Therefore, two graphs will be created, Gg = (Np, Ep)
and G4 = (N4, E4). In the next sections, the construction of these spaces and
their use in computing safe paths will be described.

2.2 Localization

Localization is a crucial task that updates the estimated position of the robot in
its internal model. Probabilistic algorithms based on partially known geometric
information of the environment constitute the focus of this task. We use the
recently introduced particle filter variant CGR [15] to obtain an an estimate
of the pose of the robot with respect to an initial global reference system. The
map of the environment is represented as a list of lines corresponding to the
lower part of walls and known objects in the world. This algorithm is very
efficient in cpu cycles and number of particles because the measurement function
is analytic and derivable. A pre-ordering of the lines accounts for occlusions and
an internal minimization loop improves the particles position using the Jacobian
of the measurement. To obtain a reasonable estimate of the ground truth pose of
the robot, a set of AprilTags [16] marks have been distributed in the apartment.
Specialized components detect the marks and compute the error between the
robot’s current belief and its real position.

Figure 2 shows the current organization of components that implement lo-
calization. Arrows in the graph can be interpreted as one component sending
information to another. Localizer receives poses from Base, AprilLoc and CGR
along with their uncertainty, although only the base odometry and CGR esti-
mation are fused. Localization based on AprilTags are used only for evaluation.
Currently, an empirically obtained threshold over the variance is used to combine
them and produce the current belief for the robot.

2.3 Free space representation for the robot

If we want the robot to be perceived by the human as real collaborative object,
it has to react and operate at human rates. One limitation to this requirement is
the delay introduced by path planning algorithms searching the free space, such
as RRT [17]. For our agent we use the probabilistic road map algorithm, PRM
[23] to create a graph representing the free space, and RRT only to search for
paths when unconnected islands remain in the PRM graph. The resulting path
is inserted into the graph to connect the isolated islands. RoboComp currently
includes a wrapper for OMPL [19] but, as of today, OMPL’s PRM implemen-
tations does not allow to store the computed graph on disk. As that feature is
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Fig. 2. Components used for localization in the Navigation Agent: Base controls the
robot displacement, RGBD provides access to the camera, Laser provides access to
the laser, AprilTags detects and estimates the pose of the tags, AprilLoc computes
the localization error between the current estimate and what the tag provides, CGR
implements the Corrective Gradient Refinement algorithm, IMU and VisOdom esti-
mate indepent robot poses but their ouputs are not included here, and Localizer is the
component that integrates all the sources to maintain the current belief.

crucial for long term robot operation we implemented a version of PRM using
the Boost Graph Library, BGL.

A free space graph created with our PRM algorithm is shown in Figure 3.
The upper-right rooms has been intentionally placed there to create an isolated
region in the graph, giving a finite construction time. In (b) the algorithm calls
RRT and obtains a feasible path. The robot traverses the path in (c¢) and in (d)
it is added to the graph a only one connected component remains.

2.4 Free space representation for the robot’s arm

A similar argument concerning the planning time can be applied to arm manipu-
lation, where seven DOFs expand the configuration space. Natural HRI demands
that repetitive actions improve over time. If the robot grabs a cup from the same
table several times, the accompanying person will expect that the robot reduces
its execution time down to human standards. Doing otherwise, human confidence
on a helpful interaction decreases. To avoid this situation we adopt a similar so-
lution as in the previous section. In this case, instead of a randomly sampled
graph of free C-space, a regular 3D grid sampling the working volume of the arm
will be used. Each element in the grid codes an euclidean 6D pose for the hand
tip and a set of configurations in free C-space that correspond to that pose. In
this initial model, only the most common hand orientation for grasping a com-
mon small object is assigned to each point in space. As we will see later, this
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Fig. 3. Sequence showing graph learning with PRM in N created by PRM. (a) The
upper right room has a very narrow entrance to force the creation of an island. (b)
When the robot is sent there, RRT is activated and finds a route to the isolated spot.
(¢) The robot traverses the path and (d) the steps in the path are learned into the
graph. Only one connected component remains

is not a limitation since the final manipulation plan includes a last refinement
step, using inverse kinematics, to reach the target orientation and position.

2.5 Path planning in free space

Once these graphs have been created using inverse kinematics computation, the
process to obtain a safe path is quite similar in both robot navigation and arm
positioning. Note that both graphs are currently kept separated although they
will be integrated in a near future. The path is created by first searching the
closest point in the graph to the current position -robot or hand-, then the closest
point in the graph to the target position and, finally, a path through the graph
linking both points.

The plan constructed by the path planner can be seen as a theoretical con-
struct based on the robot’s beliefs about the world. As such, it will not be exact
or even precise. Therefore, another components are needed to ground this con-
struct into the real word using the information coming for the sensors. These
new components update the path as it is traversed, adapting it to unexpected
events and detect critical conditions blocking the robot’s path. So, as the path
is a shared structure, when a blocking situations occurs, the planning agent is
aware and reacts computing a new path. This dynamic process will continue
until the path is completed or no solution can be found in a certain amount of
time. Note that the path connects the global planner with the robot controller
providing the necessary persistence to avoid local minima.

As illustrated in Figure 1, the path is analyzed under the laser field and
two virtual forces are created that push the path away from the obstacles while
keeping it from bending too much [1]. Currently we use the following robot
controller to compute the final forward speed V,, and rotation speed V,. [20]:

Vo= VMeaCG(/BVr) (1)
V, = ¢ + arctan(d) + C



Fig. 4. Free space graph for the arm. The four captures express different aspects of
the process. On the left, the robot is shown with grid during the learning process -
emulation. Middle up, is the graph of components deployed for this activitiy. Middle
down, is the arm as seen by the robot’s camera. Left, is the robot in RoboComp
simulator.

where V) is the maximum advance speed, C' is the curvature of the path,
G is the Gaussian function, V;. is the rotation speed and ( is a gain. Note that
V., is computed as the inhibition of the initial Vj; caused by world interactions.
For V,., ¢ is the angle formed by the robot and the tangent to the path at the
closest point to the robot, d is the perpendicular distance to the road and C' is
again the curvature.

The dynamics created by the algorithm make the path adapt to narrow pas-
sages, moving objects and even can be broken by a person passing by and restored
afterwards. As the robot traverses the path, the steps left behind are deleted and
the process ends when the target is reached and the path is completely erased.

2.6 Path execution by the arm

Low-cost arms present an important limitation that must be solved. Backslash
and inaccurate calibrations induce errors in the end effector’s position. The errors
can easily ruin any intent of grasping objects if the only feedback used is the
one from the joints’ encoders. An elegant way out of this situation is to use a
two-step procedure. First, the hand is brought to a place close to the target
using a path through N4. This movement is based only on joints feedback and is
executed in parallel with a movement of the eyes whose purpose is to bring the
hand and the target inside the camera’s frustum. The planning of that movement
using the graph of free space N4 was described in Section 2.5. The second step
is a closed-loop visual servo control that brings the hand to its final grasping
positions. This second part is the one that can cancel out the errors caused by
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Fig. 5. Components involved in free space learning, path generation and navigation.
Note that most components are also used in graphs shown in other sections.
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backslash and mechanical misalignments. To detect and track the position of the
hand, an AprilTag [16] is used. We present now this algorithm.

To describe the scenario and the operations involved we follow the notation
in [6]:

— PRy expresses the rotation matrix of the coordinate frame y with respect
the x frame

— *t,: the position of the frame y with respect =

— "ty the position of the frame y with respect x

We also define the following poses®:

— v;: The coordinate frame of the end effector, as provided by the visual feed-
back in the ¢th iteration of the algorithm.

— t: The target pose.

— k;: The pose that is actually sent to the IK module in the ith iteration of
the algorithm. The existence of backslash and calibration inaccuracies make
t and k differ.

Thus, the aim of the algorithm is to reduce to the maximum the difference
between the effector’s pose as given by visual feedback (v) and the target pose (t).
Following the previously mentioned notation, the translation error is computed
as 't, and the rotational error as *R,. This way, the goal is to make t,d as close
to zero as possible and 'R, as close to an identity matrix as possible.

The position of the effector as seen (v) is updated in real time each time the
camera sees the corresponding tag. The algorithm works by sending the inverse

3 Here, as in [6], we use the terms coordinate frame and pose interchangeably.



(a) RoboHome (b) Ursus 3

Fig. 6. (a) Autonomy Lab in RoboLab, UEx. A 70m apartment where robots can
interact with people in HRI experiments. b)Ursus is the third generation of RoboLab’s
mobile manipulator [21]. It has a head, two 7 DOFs arms and an omnidirectional base
custom built with Mecanum wheels.

kinematics module a series of intermediate positions (k) of the effector as seen
by the camera (v) and as close to the target (¢) as possible.
The algorithm works as follows:

1. The IK target k is initialized as the actual target: k = ¢

2. The translation and rotational errors between the visual position and the
IK position are calculated: ', and ‘R,, respectively.

3. The algorithm successfully stops if the errors are small, or unsuccessfully if
it has been running for a long period of time.

4. A corrected IK position (k;) so that: *it, = —Vit, and ¥R, = “"R,”1 are
calculated and sent to the IK module.

5. If error > threshold go to step 2.

3 Experiments

Two experiments have been made to test and validate the current state of the
new navigation agent within the robot Ursus, shown in Figure 6. Also in the
same Figure it is depicted a 3D drawing of RoboLab’s Autonomy Lab, a 70m?
apartment conditioned for social robotics research 6.

3.1 Localization and navigation experiment

The first experiment was designed to measure the robustness of the CGR local-
ization algorithm in real world, highly perturbing conditions. A list with the 2D



segments representing the walls and furniture on the floor was obtained from
the construction blueprint and by manual measurement. The robot was sent to
a set of random locations in the apartment and the ground truth position was
recorded using a set of AprilTags [22]. Figure 7 shows the evolution of the accu-
mulated error during 90 meters of unstopped navigation. The mean is 8cm and
the standard deviation 3cm showing a very good localization performance for
this kind of social tasks.

it
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Fig. 7. (a) Accumulated error of the robot after 90m of continuous navigation in a
noisy environment, with unmodeled objects and people walking around. Mean 0.08 m.
Variance 0.0014. Standard deviation 0.0367. b)The y axis shows the errors (euclidean
norm) obtained in translation. The X axis shows the experiment number and the
standard deviation of the errors. ¢) The Y axis shows the errors obtained in rotation.
The X axis shows the experiment number and the standard deviation of the errors.

3.2 Arm control experiment

A simulated experiment with increasing synthetic calibration errors was con-
ducted to show how the visual servoing algorithm is capable of moving the effec-
tor to target poses with good precision. Six experiments were performed sending
the arm to 100 different positions in each one. An increasing level of error was
injected for each experiment in the arm’s kinematic configuration. Errors were
assigned in increments of 1.5 degrees for joint angular position (encoder error)
and of 5 mm for translational joint position (mechanical misalignment). The
100 targets of each experiment were randomly generated from a work space of
dimensions X € 140 —130 Y € 780 — 800 and Z € 300 — 900 in front of the
robot, where +Z points outwards perpendicular to robot’s chest. The robot’s
arm movement would stop whenever the rotational error was lower than 0.1 rad
and the translational error was lower than 5 mm. Errors were recorded at the
end of each robot’s arm movement. As can be seen in Figure 7, even in the pres-
ence of very high calibration errors the end effector ended with translation errors
under the 5 mm threshold, and rotational errors were widely bellow the 0.1 rad.
threshold except for the most adverse situation in which the mean settled close
to 8 degrees.



4 Conclusions

In this paper we have shown work in progress on the construction of a new
navigation software agent for the RoboCog architecture. Five interrelated func-
tionalities have been reassessed and new algorithms have replaced the existing
ones. As a result we have now a very robust localization component that can
take pose estimations of the robot from a number of other components and
maintain a reliable pose for extended periods of time under real life aggressive
conditions. In this group, CGR provides map based localization and its perfor-
mance is excellent. Robot navigation was formerly based on the combination of
RRT and VFH+ and their integration presented important problems. With the
introduction of a persistent structure coding the current path, those problems
no longer exist and a whole new set of new possibilities bounce into. The path
allows for smoother paths, easier recovery, better controllers and a simpler and
more rational software architecture. As a future line of work, we want to enrich
the path with semantic annotations, leading also to the idea of semantic path
planning and execution. Arm planning has also received an important improve-
ment with this work. The early problems that we had with very low repeatability
and precision during grasping operations, have been reduced to a point where
we can grab a cup with much more reliability. The decomposition of arm grab-
bing gestures in two actions, one driven only by internal feedback and the other
by visual feedback in the camera space, is a promising line of future research,
markless visual servoing being the next challenge.
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