
https://doi.org/10.1007/s11042-021-11113-6

1188: ARTIFICIAL INTELLIGENCE FOR PHYSICAL AGENTS

A graph neural network to model disruption
in human-aware robot navigation

P. Bachiller1 ·D. Rodriguez-Criado2 ·R. R. Jorvekar3 ·P. Bustos1 ·D. R. Faria2 ·
L. J. Manso2

Received: 31 January 2021 / Revised: 4 May 2021 / Accepted: 28 May 2021 /

© The Author(s) 2021

Abstract
Autonomous navigation is a key skill for assistive and service robots. To be successful,
robots have to minimise the disruption caused to humans while moving. This implies pre-
dicting how people will move and complying with social conventions. Avoiding disrupting
personal spaces, people’s paths and interactions are examples of these social conventions.
This paper leverages Graph Neural Networks to model robot disruption considering the
movement of the humans and the robot so that the model built can be used by path planning
algorithms. Along with the model, this paper presents an evolution of the dataset Soc-
Nav1 (Manso et al 2020) which considers the movement of the robot and the humans, and
an updated scenario-to-graph transformation which is tested using different Graph Neural
Network blocks. The model trained achieves close-to-human performance in the dataset. In
addition to its accuracy, the main advantage of the approach is its scalability in terms of
the number of social factors that can be considered in comparison with handcrafted models.
The dataset and the model are available in a public repository (https://github.com/gnns4hri/
sngnnv2).

Keywords Social navigation · Graph neural networks · Human-robot interaction

1 Introduction

Human-aware robot navigation deals with the challenge of endowing mobile social robots
with the capability of considering the emotions and safety of people nearby while moving
around their surroundings. There is a wide range of works studying human-aware navigation
from considerably diverse perspectives. Pioneering works such as [28] started taking into
account the personal spaces of the people surrounding the robots, often referred to as prox-
emics. Semantic properties were also considered in [10]. In addition to proxemics, human

This paper is an extension of [24]. New contributions include considering the speed and previous poses
of the robot and the people around it. It also provides a new dataset.

� L. J. Manso
l.manso@aston.ac.uk

Extended author information available on the last page of the article.

Published online: 19 June 2021

Multimedia Tools and Applications (2022) 81:3277–3295

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11113-6&domain=pdf
http://orcid.org/0000-0003-2616-1120
https://github.com/gnns4hri/sngnnv2
https://github.com/gnns4hri/sngnnv2
mailto: l.manso@aston.ac.uk


motion patterns were analysed in [15] to estimate whether humans are willing to interact
with a robot. Although not directly applied to navigation, the relationships between humans
and objects were used in the context of ambient intelligence in [3]. Proxemics and object
affordances were jointly considered in [42] for navigation purposes. Two extensive surveys
on human-aware navigation can be found in [33] and [4].

Despite the previously mentioned approaches being built on well-studied psychologi-
cal models, they have limitations. Considering new factors programmatically (i.e., writing
additional code) involves a potentially high number of coding hours, makes systems more
complex, and increases the chances of including bugs. Additionally, with every new aspect
to be considered for navigation, the decisions made become less explainable, which is
precisely one of the main advantages of handcrafted approaches over data-driven ones.
In addition to the mentioned model scalability and explainability issues, handcrafted
approaches have the intrinsic and rather obvious limitation that they only account for what
the model explicitly considers. Given that these models are manually written by humans,
they cannot account for aspects that the designers are not aware of.

Approaches leveraging machine learning have also been published. The parameters of
a social force model [16] are learned in [11] and [30] to navigate in human-populated
environments. Inverse reinforcement learning is used in [32] and [40] to plan navigation
routes based on a list of humans in a radius. Social norms are implemented using deep
reinforcement learning in [8], again, considering a set of humans. An approach modelling
crowd-robot interaction and navigation control is presented in [6]. It features a two-module
architecture where single interactions are modelled and then aggregated. Although its
authors reported good qualitative results, the approach does not contemplate integrating
additional information (e.g., relations between humans and objects, structure and size of the
room). The work in [26] tackles the same problem using Gaussian Mixture Models. It has
the advantage of requiring less training data, but the approach is also limited in terms of the
input information it can process.

All the previous works and many others not mentioned have achieved outstanding results.
Some model-based approaches such as [10] or [42] can leverage structured information to
take into account space affordances. Still, the data considered to make such decisions are
often handcrafted features based on an arbitrary subset of the data that a robot can poten-
tially work with. There are many reasons motivating to seek learning-based approaches not
limited to a selection of handcrafted features. Their design is time-consuming and often
requires a deep understanding of the particular domain (see discussion in [21]). Addition-
ally, there is generally no guarantee that a particular hand-engineered set of features is close
to being the best possible one. On the other hand, most end-to-end deep learning approaches
have important limitations too. They require a large amount of data and computational
resources that are often scarce and expensive, and they are hard to explain and manually
fine-tune. Somewhere in the middle of the spectrum, we have proposals advocating not to
choose between hand-engineered features or end-to-end learning. In particular, [2] proposes
Graph Neural Networks (GNNs) as a means to perform learning that allows combining raw
data with hand-engineered features, and most importantly, to learn from structured informa-
tion. The relational inductive bias of GNNs is specially well-suited to learn about structured
data and the relations between different types of entities, often requiring less training data
than other approaches. In this line, we argue that using GNNs for human-aware navigation
reduces the time and effort required to integrate new social cues.

In this work, we trained different GNN models to estimate people’s comfort given a
scenario and its previous states. The state of a scenario includes objects, walls, the robot,

3278 Multimedia Tools and Applications (2022) 81:3277–3295



and humans who can be interacting with other humans or objects. For moving entities (i.e.,
humans and the robot) the network also considers not only their pose but also their linear
and angular velocities. GNNs are proposed because the information that social robots can
work with is not just a map and a list of people, but a more sophisticated data structure
where the entities represented can have different relations among them. For example, social
robots could potentially have information about who a human is talking to, where people
are looking at, who is friends with whom, or who is the owner of an object in the scenario.
Regardless of how this information is acquired, it can be naturally represented using a graph,
and GNNs are a particularly well-suited and scalable machine learning approach to work
with these graphs.

2 Graph neural networks

2.1 Graph neural networks basics

Graph Neural Networks (GNNs) are a family of machine learning approaches which extend
neural networks to be able to take graph-structured data as input. They can perform classi-
fications and regressions on graphs, nodes, edges, as well as predicting links when working
with partially observable phenomena. Except for few exceptions (e.g., [46]) GNNs are com-
posed by similar stacked blocks (layers) operating on a graph whose structure remains static
but the features associated to its nodes are updated in every layer of the network (see Fig. 1).

As a consequence, the features associated to the nodes of the graph in each layer become
more abstract and are influenced by a wider context as layers go deeper. The features in the
nodes of the last layer are frequently used to perform the final classification or regression.

The first published efforts on applying neural networks to graphs date back to works by
A. Sperduti et al. [39]. GNNs were further studied and formalised by M. Gori et al. [13] and
F. Scarselli et al. [37]. However, it was with the appearance of Gated Graph Neural Net-
works [23] and especially Graph Convolutional Networks (GCNs, [19]) that GNNs gained
traction. A review and a unified notation for GNNs can be found in [2].

Fig. 1 A basic GNN block/layer. GNN layers output updated versions of the input graph. These updated
graphs have the same nodes and links, but the feature vectors of the nodes will generally differ in size and
content depending on the feature vectors of their neighbours and their own vectors in the input graph. A GNN
is usually composed of several stacked GNN layers. Higher level features are learnt in the deeper layers, so
that the output of any of the nodes in the last layer can be used for classification or regression purposes

3279Multimedia Tools and Applications (2022) 81:3277–3295



Graph Convolutional Networks (GCN [19]) is one of the most common GNN blocks.
Because of its simplicity, we build on the GCN block to provide the reader with an intuition
of how GNNs work. Following the notation proposed in [2], GCN blocks operate over a
graph G = (V ,E), where V = {vi}i=1:Nv is a set of nodes, being vi the feature vector of
node i and Nv the number of vertices in the graph. E = {(sk, rk)}k=1:Ne is a set of edges
where sk and rk are the source and destination indices of edge k and Ne is the number of
edges in the graph. Each GCN layer generates an updated representation v′

i for each node
vi using two functions:

ρe→v(Ei) =
∑

{k:rk=i}
ek,

φv(ei, vi) = NNv([ei, vi]).
For every node vi , the first function (ρe→v(Ei)) is used to aggregate the feature vectors of
other nodes with an edge towards vi and generates a temporary aggregated feature ei which
is used by the second function:

ei = ρe→v(Ei).

The function φv(ei, vi) is then used to generate an updated v′
i feature vector for each

node i from the aggregated feature vector ei using a neural network (usually a multi-layer
perceptron, but the framework does not make any assumption on this):

v′
i = φv(ei, vi).

Such a learnable function is generally the same for all the nodes. By stacking several blocks
where features are aggregated and updated, the feature vectors can carry information from
nodes far away in the graph and convey higher level features that can be finally used for
classification or regressions.

Several means of improving GCNs have been proposed. Relational Graph Convolutional
Networks (R-GCNs [38]) extend GCNs by considering different types of edges separately.
They are applied to vertex classification and link prediction in [38]. Graph Attention Net-
works (GATs [43]) extend GCNs by adding self-attention mechanisms (see [41]). They
are applied to vertex classification in [43]. In Message Passing Graph Neural Networks
(MPNNs [12]), the messages which are aggregated are not only composed of node features
but also edge features. This allows MPNNs to account for both vertex and edge features.
For a more detailed review of GNNs and the generalised framework, please refer to [2].

2.2 Graph neural networks applied to human-aware navigation

A number of recent machine learning-based approaches leveraging structured data for social
navigation have been recently published. A GNN model integrated with a Deep Reinforce-
ment Learning (DRL) algorithm based in Monte Carlo Tree Search was presented in [5]. It
utilises a graph-based model to detect the implicit relations between the humans in a room.
Interactions are useful to predict future human trajectories. For instance, interacting pedes-
trians generally behave differently than those who do not interact. This phenomena is also
exploited in [7], where a GCN-based DRL leverages the gaze of humans to estimate inter-
actions and predict their trajectories. These works consider human-robot and human-human
relations but disregard interactions with objects or obstacles that could be exploited. More-
over, the DRL algorithms in [5] and [7] use a simple handcrafted reward function based on
the minimum distance between the robot and the humans that disregards any other infor-
mation including the orientation and velocity of the humans or how densely populated the

3280 Multimedia Tools and Applications (2022) 81:3277–3295



room is (distance restrictions are usually eased in crowded spaces). Due to the variety of dif-
ferent scenarios and factors to consider, handcrafting a reward function that complies with
social rules seems prohibitively complex and time-consuming.

A model combining a Convolutional Neural Network (CNN) and a GNN to learn an
action policy for multi-robot navigation is presented in [22]. The CNN extracts features
from local observations of the environment, and the action policy for the robot swarm is
computed from those features using GNN. Although safety and collision avoidance are
considered, the approach only considers humans as obstacles.

Other works use GNNs for reasoning and perception in the domain of social navigation.
A significant amount of them directs their focus to the prediction of pedestrians’ paths as
exemplified in works undertaken by [17, 44] or [14]. The use of GNNs for these tasks
allows extracting additional information from the crowd such as relations between people.
However, none of the previous works tackle the problem of modelling discomfort.

GNNs have been used to model and estimate discomfort in our previous works, [24]
and [35]. Both works generate discomfort estimations on a scale from 0 to 100 and con-
sider human-human, human-robot and human-object interactions, as well as walls and
other objects. While [24] generates a single value a given scenario, [35] generates a two-
dimensional cost map using a combination of GNNs and CNNs, in that order. The main
limitation of these models is that the scenarios they consider are static (i.e., they disregard
human and robot motion).

The work at hand follows a similar approach to [24] with a number of enhancements.
Firstly, we consider two different scores to measure two aspects of social navigation (see
Section 3). Secondly, the model is trained using dynamic scenes where humans and the
robot move, which was the main limitation of [24].

3 SocNav2 dataset

SocNav1 [25], was designed to learn and benchmark estimation functions for social navi-
gation conventions. SocNav2 -presented in this paper- has the same goal as its predecessor
but unlike SocNav1, it considers the velocity and trajectory of the robots and the humans
around them. As SocNav2, SocNav1 contains scenarios with a robot in a room, a number
of objects and a number of people that can potentially be interacting with other objects or
people. In case any human-human or human-object interaction exists it is also noted in the
scenarios. Each sample in the dataset is given a score between 0 and 100, depending on
the extent that the subjects consider that the robot is disturbing the people in the scenario.
The main limitation of SocNav1 is that samples do not consider velocity information or the
trajectory of the humans.

SocNav2 overcomes such limitation and provides 13406 scored samples of dynamic
scene sequences. Each sample consists of 35 “snapshots” of a scene of a room with a mov-
ing robot, objects and potentially moving humans, taken during a time interval of 4 seconds.
In SocNav2 the room also includes a landmark that constitutes a goal position to be reached
by the robot.

Each SocNav2 sample includes scores for two social navigation-related statements: “the
robot does not cause any disturbance to the humans in the room” (Q1) and “the robot is
moving towards the goal efficiently, not causing any disturbance to the humans in the room”
(Q2). The scores range from 0 to 100, considering the following reference values:

– 0: unacceptable

3281Multimedia Tools and Applications (2022) 81:3277–3295



– 20: undesirable
– 40: acceptable
– 60: good
– 80: very good
– 100: perfect

The scenarios compiled in SocNav2 have been generated using SONATA [1]. SONATA
is a toolkit built on top of PyRep [18] and CoppeliaSim [36] designed to simulate human-
populated navigation scenarios and to generate datasets. It provides an API to generate
random scenarios including humans, objects, interactions, the robot and its goals. The walls
delimiting a room are also randomly generated considering rectangular and L-shaped rooms.
Despite SONATA only provides simulated scenarios, the use of synthetic data is essential in
the context of social navigation. Firstly, because it would not be feasible to generate as many
situations using only real-world data. Secondly, because situations endangering humans’
integrity, such as human-robot collisions, could not be generated in real scenarios.

The movements of the robot were generated through two different strategies to increase
the diversity of its behaviour. The first strategy uses a machine learning model (see [1])
that outputs the control actions of the robot according to a graph representation of the sce-
nario. This model was trained using supervised learning (i.e., it only contains examples of
appropriate behaviours), so it has unexpected behaviours in situations that would not usu-
ally happen when controlled by humans. Nevertheless, for the creation of SocNav2, these
behaviours allow to generate a wide variety of good and bad situations that would not have
been obtained from random actions. In addition to the samples where the movement of the
robot was controlled by the machine learning approach, a second set of samples was gener-
ated using a joystick to control the robot manually. This second set was created to include
infrequent situations in the first set, such as the robot moving backwards to avoid getting
blocked or stopping to let people pass.

The subjects providing the scores for SocNav2 were shown sequences of 4 seconds, and
were asked to give their answers for the behaviour of the robot in the last second. During
the three previous seconds, the video was shaded to make easier to know what time slice
had to be evaluated (see Fig. 2). The geometrical and relational data of the sequences were
stored in JSON files. Subjects were asked to provide a score for Q1 and Q2 after watching
the video (as many times as necessary) according to the aforementioned reference values.
Despite some guidelines were given, subjects were requested to feel free to express their
opinions. Some of the guidelines were the following:

– The goal should be disregarded when answering Q1. It should only be considered when
answering Q2.

– The closer the robot gets to people, the more it can be deemed disturbing.
– In small rooms with a high number of people, closer distances are acceptable in

comparison to big rooms with fewer people.
– The robot is required not to collide with objects or walls. If it collides it should have a

score of 0.

Six subjects participated in the scoring of the dataset, producing 13406 scored samples.
This initial set of samples has been extended using data augmentation. Specifically, each
scenario has been mirrored in the vertical axis assuming the same scores as in the original
scenario. In addition, each normal and mirrored scenario has been rotated 180◦, changing
also the sign of the advance speed of the robot. This extension assumes that the human

3282 Multimedia Tools and Applications (2022) 81:3277–3295



Fig. 2 A SocNav2 sequence. The shaded images correspond to the first 3 seconds of the sequence, which
are also shown to subjects to provide context. The last image, in Fig. 2d, corresponds to the second that the
users score. During the whole sequence the robot is moving forwards

discomfort does not change whether the robot is moving forwards or backwards. As a result
of this data augmentation process, the final dataset is composed of 53600 samples.

In order to analyse the consistency of the scoring of the dataset, the inter-rater and intra-
rater agreements have been computed for 4 subjects using the linearly weighted kappa
coefficient [9]. For the inter-rater consistency, common samples scored by each pair of sub-
jects were considered. The minimum number of common samples for which this coefficient
was obtained is 609. For measuring the intra-rater reliability, each user scored 200 duplicate
samples. Tables 1 and 2 show the inter-rater and intra-rater consistency for the scores of Q1
and Q2, respectively (intra-rater in the diagonal cells, inter-rater in the remaining cells).

As shown in Table 1, the intra-rater consistency for Q1 is “almost perfect” in the scale
defined in [20]. The inter-rater agreement for Q1 can be considered substantial in most of
the cases. Only subjects 1 and 4 have a low agreement, but they fall in the high moder-
ate bracket. Table 2 shows that the consistency for Q2 is generally lower than for Q1. This
reduction can be due to the very nature of the question, since subjects may broadly dif-
fer about how the robot should move to efficiently reach the goal position. Nevertheless,
the inter-rater and intra-rater consistency is still substantial excepting for subjects 1 and 4,
which is high moderate.

3283Multimedia Tools and Applications (2022) 81:3277–3295



Table 1 Inter-rater and
intra-rater consistency of four
subjects for Q1

Subject1 Subject2 Subject3 Subject4

Subject1 0.83 0.75 0.80 0.56

Subject2 0.75 0.88 0.85 0.63

Subject3 0.80 0.85 0.88 0.62

Subject4 0.56 0.63 0.62 0.81

4 Scenario to graph transformation

This paper follows the strategy developed in [24] and includes a number of modifications
to account for velocity and trajectory information. To leverage the properties of GNNs (see
Section 2) the input data from SocNav2 has to be transformed into a graph. This section
describes the scenario-to-graph transformation process.

4.1 Graph structure

The graphs inputted to the GNN models are composed of a sequence of 3 sub-graphs for 3
snapshots of the videos shown to the subjects. Each sub-graph (frame graph) is separated by
1 second, being the last one the graph which the users scored. The graph creation process has
two steps. First, each snapshot is transformed into a separate frame graph. Once the 3 frame
graphs in the sequence have been generated, they are merged into a single graph representing
the sequence (see Fig. 3). This temporal connection is done with an edge linking the node
in each frame graph with the same node in the next frame graph.

The nodes in the graphs have five types:

– room: There is one room node per frame graph. It acts as a global node [2] and it is
connected to any other node of the graph for that frame. Using a global node favours
communication across the graph and reduces the number of layers required.

– wall: A node for each of the segments defining the room.
– goal: Used to represent the position that the robot must reach.
– object: A node for each object in the scenario.
– human: A node for each human. Humans might be interacting with objects or other

humans.

There is no node explicitly representing the robot because all node features are in the
reference frame of the robot (further explained in Section 4.2). For every human engaging in
interactions, two new edges are added between the human and the entity (human or object)
they interact with, one in each direction. The graphs also include self-edges for all nodes,
and the room node is connected in both directions to the rest of the nodes in the graph.
As an example, Fig. 2 depicts four frames of a sequence where four humans are in a room

Table 2 Inter-rater and
intra-rater consistency of four
subjects for Q2

Subject1 Subject2 Subject3 Subject4

Subject1 0.74 0.68 0.72 0.57

Subject2 0.68 0.71 0.74 0.63

Subject3 0.72 0.74 0.76 0.64

Subject4 0.57 0.63 0.64 0.73

3284 Multimedia Tools and Applications (2022) 81:3277–3295



Fig. 3 Example of how the scenario-to-graph transformation works, based on the scenario depicted in Fig.2

with several objects. Two of the humans are interacting with each other, another human
is interacting with an object, and the remaining human is moving without interacting with
other human or object. Figure 3 shows the structure of the resulting graph.

4.2 Node and edge features

Node feature vectors are built by concatenating different sections. The first section is a one-
hot encoding for the type of node. The remaining sections are type specific and are only
filled if the node is of the corresponding type, filled with zeros otherwise. The features
used in the sections for human, wall and object nodes are: position, distance to the robot,
speed and orientation, all from the robot’s frame of reference. Position and distance are
represented in decametres for normalization purposes. Similarly, the orientation is split into
sine and cosine, instead of including the angle itself. For wall segments, the position is the
centre of the segment and the orientation is the tangent. Object sections also contain width
and height features defining the object’s bounding box. The section corresponding to the
room symbol is composed of the number of humans in the room and the velocity command
given to the robot. Table 3 depicts this layout.

Table 3 Structure of the feature vectors of nodes

n. one-hot 5 elements (one per node type)

f. one-hot 3 elements (one per frame graph)

room number of humans adv. speed rot. speed

human pos. (2D) speed (3D) orientation (2D) distance

object pos. (2D) speed (3D) orientation (2D) distance shape (2D)

wall pos. (2D) orientation (2D) distance

goal pos. (2D) distance

The first two sections refer to the one-hot encodings that specify the node types and the frame they belong
to. Positions (pos.) are defined by 2D euclidean coordinates. Speeds are expressed using 3 dimensions for
the linear and angular velocities in the plane. Orientations are given by the corresponding sine and cosine
values. All metric values are in the robot’s reference frame

3285Multimedia Tools and Applications (2022) 81:3277–3295



Table 4 Ranges of the
hyperparameter values sampled hyperparameter min max

max. epochs 1000

patience 4

batch size 25 70

hidden units 20 90

attention heads 3 10

number of bases 4 24

learning rate 1e-4 5e-4

weight decay 0.0 1e-6

layers 3 9

dropout 0.0 1e-6

alpha 0.1 0.3

Attention heads is only
applicable to GAT blocks.
Number of bases is only
applicable to R-GCN blocks

Edge features were implemented differently for the experiments depending on the blocks
used. Some GNN blocks such as GAT or GCN, do not support edge features or labels, so no
edge information is provided when they are used. R-GCN blocks support edge labels, so a
different label is used for each possible type of relation (e.g., human-human, human-room,
wall-room). MPNN blocks treat edge information as features not limiting it to identifiers.
Therefore, besides containing values identifying the kind of relationship as a one-hot encod-
ing, edge features also include the distance between the two entities being linked when using
MPNN blocks.

5 Experimental results

Based on the assumption that in real life scenarios we can build on top of third party body
trackers (e.g., [31, 34]) and path planning systems, we proceed with the evaluation of the
approach against the dataset presented in Section 3. Because all nodes are connected to their
corresponding room node, the GNNs were trained to perform backpropagation based on the
feature vector of the room node in the last layer.

Three GNN blocks were considered in the experiments: the two best-performing GNN
blocks in [24] (i.e., R-GCN [38], GAT [43]) and MPNN [12]. The implementations tested
are based on the Deep Graph Learning library (DGL [45]), using PyTorch [29] as backend.

To benchmark the different architectures, 341 training sessions were launched using the
SocNav2 dataset with a split of 47598 samples for training, 643 for evaluation and 643 for
testing. Given the variability of scenarios, 643 was considered a representative sample set
size. The hyperparameters were randomly sampled from the range values shown in Table 4.
Table 5 summarises the results obtained for the best model of each architecture, providing
the performance on the different splits of the dataset.

The training results obtained (see Table 5) show that MPNN blocks delivered the best
results, with a Mean Squared Error (MSE) of 0.036821 for the evaluation dataset. The best
model, which was selected based on the MSE on the evaluation split, yielded an MSE of
0.035192 for the test split. The best performing model was trained with a batch size of 57,
a learning rate of 2.5e-4, weight decay regularisation of 1.0e-6 and no dropout. Its network
architecture is a sequence of 6 MPNN blocks with 40, 30, 21, 12 and 3 hidden units.

3286 Multimedia Tools and Applications (2022) 81:3277–3295



Table 5 The 3 GNN blocks
tested along with their MSE for
SocNav2

GNN block training loss development loss test loss

(MSE) (MSE) (MSE)

R-GCN 0.017347 0.040098 0.040607

GAT 0.015188 0.037838 0.035818

MPNN 0.025020 0.036821 0.035192

To provide an intuition of the output of the network, the scenarios of Figs. 4, 5 and 2 have
been tested considering the output of the model for all the different positions of the robot in
the room. As a result, a heatmap representation of the network’s response has been obtained
for each tested scenario. To ease the interpretation of each heatmap, the elements presented
in the scenarios have been drawn over the image with the following representation: oriented
blue circles for humans, small green circles for objects, a wider green circle for the goal
position and red lines for interactions. The horizontal and vertical axis of the room’s frame
of reference have also been depicted using black discontinuous lines to help distinguish the
differences among the heat maps.

Figure 6 shows the resulting generated maps for the first and last situations of the scenario
of Fig.4 considering the network output for Q1. The different colours represent the output
of the network. A red colour is used to show a value near to 0 (unacceptable situation). Grey
tones represent the remaining range of values, where dark grey levels indicate lower values
(high degree of discomfort) and a light one a high value (socially acceptable). This test
shows how the network adapts to differently populated environments. For crowded spaces
such as the one in Fig. 4a, the discomfort area of the humans narrows in relation to scenarios
with less dense spaces. For instance, the unacceptable area of the humans in the bottom
left of the room is wider in Fig. 6b than in Fig. 6a. In addition, the response of the network
increases in the positions near the walls if the number of people in the room is high (see
the goal marked by a green circle in the right top corner of the images as a reference point).
This means that the positions near the limits of the room are considered more suitable for
crowded environments.

The scenario in Fig. 5 has been used to test how the actions of the robot have influence in
the behaviour of the network. Figures 7 and 8 show the response of the network for Q1 and
Q2, respectively. From bottom to top, left to right, the actions of the robot for each image

Fig. 4 Two scenarios containing a different number of people. Results for these scenarios are shown in Fig. 6

3287Multimedia Tools and Applications (2022) 81:3277–3295



Fig. 5 Scenario with two groups of people walking. Results for these scenarios are shown in Figs. 7 and 8

are the following: turning left, stopped, turning right, moving forward to the left, moving
forward, moving forward to the right. As shown in Fig. 7, the unacceptable area (red area)
of moving people changes according to their motion direction and the robot actions, while
for standing humans such an area remains almost unalterable. In this way, when the robot
moves forward (Fig. 7b) the red area of the group of people moving in the opposite direction
extends towards the direction of the movement. However, for the same action of the robot,
the red area of the group of people moving in the horizontal direction keeps centered in the
vertical-axis’ position of the humans. For this second group, the unacceptable area extends
forwards or backwards when the robot moves to the left (Fig. 7a) or to the right (Fig. 7c).
When the robot is stopped or turning without translation, the positions with the lowest scores
elongate towards the opposite direction of the movement of the humans (Fig. 7d, e and v).
These positions correspond to the trajectory followed by the humans during the sequence,
therefore the network response can be considered consistent with the situation.

Fig. 6 Output of the model for the two scenarios in Fig. 4. The response of the model is more strict for the
case with fewer people

3288 Multimedia Tools and Applications (2022) 81:3277–3295



Fig. 7 Response of the model for Q1 for the scenario in Fig. 5 considering different actions of the robot

As expected, the response of the network regarding humans is maintained for Q2 (Fig. 8),
but in this case the positions with low values increase according to the goal position and the
action of the robot. For instance, moving forward leaving the goal behind has a very low
score. Thus, when the goal is situated behind the robot, the best scoring actions are turning
right or left according to the relative position of the goal.

To test the network response to potential interactions between humans or humans and
objects, the scenario of Fig. 2 has been used with the robot moving forward. Results for this
scenario with and without interactions for Q1 are shown in Fig. 9. As can be observed in
Fig. 9a, the interaction between the human and the object produces lower values than the
interaction between the two humans. This is consistent with the action of the robot, since the
human-object interaction is taking place in the direction of the movement of the robot. As a
consequence, the interruption caused by the robot action is more intense than the one that is
produced in the human-human interaction. If no interactions are taking place (Fig. 9b), the
areas between the two humans in the top of the image and the human and the object in the
left are considered socially acceptable positions. Thus, the network is properly generalising
the different kinds of situations. Another interesting result that can be seen in Fig. 9b is
the different treatment of humans and objects when objects are not being used by humans.
Specifically, being close to an object has a high response, while being close to a human is
not considered acceptable.

Due to the subjective nature of the scores in the dataset (human feelings are utterly
subjective), there is some level of disagreement even among humans. To compare the per-
formance of the network with human performance, we used a subset of the samples in
SocNav2 which was labelled twice by each of the subjects (the same subset used to obtain

3289Multimedia Tools and Applications (2022) 81:3277–3295



Fig. 8 Output of the model for Q2 for the scenario depicted in Fig. 5 considering different actions of the robot

Fig. 9 The output of the model for the sequence depicted in Fig. 2. Figure 9a is the output of the model with
the sequence in its original form. Figure 9b is the output of the model with the interactions removed. It is
apparent that the response of the model for the perpendicular interaction is lower than that of the parallel one.
This aligns with the intuition that the robot would be less disturbing if crossing perpendicularly than along
the interaction line

3290 Multimedia Tools and Applications (2022) 81:3277–3295



Fig. 10 Histogram of the absolute error in the test dataset for Q1

Tables 1 and 2). Using the mean of the 8 scores that were provided for each scenario as
a reference, the MSE for each of the participants was computed. The average MSE was
0.036981, so we use that value as an indicative of human accuracy. This means that the net-
work performs close to human accuracy (even slightly better 0.035192). Figures 10 and 11
show the histograms of the error of the model in the test split of the dataset for Q1 and Q2.
In [24] we compared our results disregarding speed with [42] and achieved a considerably
lower mean squared error (0.022 versus 0.12965). Although the comparison was favourable,
it is not entirely fair as the approaches have slightly different goals. We are aware of other
researchers currently working with the dataset used in this paper and SocNav1 [25], but
there are no published works to compare with at the time of writing.

Fig. 11 Histogram of the absolute error in the test dataset for Q2

3291Multimedia Tools and Applications (2022) 81:3277–3295



6 Conclusions

Most approaches introduced in Section 1 deal with modelling human intimate, personal,
social and interaction spaces instead of social inconvenience, which is a more general term.
To the best of our knowledge, all papers modelling discomfort around robots disregard infor-
mation such as explicit interactions, trajectories or speed. This paper tackled these issues
with a specific scenario-to-graph transformation and a graph neural network architecture
composed of 6 MPNN blocks.

The results obtained are close to human accuracy and improve those in [24] not only in
terms of MSE but also in terms of the features considered (i.e., the trajectory and speed of
the robot and the humans). The results confirm that the discomfort is only skewed to the
front of the humans when there is movement involved, which was initially hypothesised
in [24]. The results also show that: a) the model adapts to a variable density of humans (see
Fig. 6); b) static humans are considered more carefully; and c) the model is able to consider
the interactions which have been given explicitly.

Future works point to user profiling and personalisation, as well as considering the activ-
ity of the humans and their gaze as done in works such as [7]. Also, an ongoing line of
research explores ways of linking the output of the GNN (questions Q1 and Q2) to driving
control of the robot. An end-to-end solution is a possibility but complicates the acquisition
of labelled examples and the modulation of the final control action. An interesting alterna-
tive would be to use the output of the GNN as an additional restriction to be fulfilled by a
Model Predictive Controller [27].

The code to test the resulting GNN model, including the code implementing the scenario-
to-graph transformation and the code to train the model suggested, has been published in a
public repository as open-source software: https://github.com/gnns4hri/sngnnv2.

Acknowledgements This work has partly been supported by grant RTI2018099522-BC42, from the Spanish
Government, and by grants GR18133 and IB18056, from the Government of Extremadura.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baghel R, Kapoor A, Bachiller P, Jorvekar RR, Rodriguez-Criado D, Manso LJ (2020) A toolkit to
generate social navigation datasets. In: Workshop of physical agents. Springer, pp 180–193

2. Battaglia P. W., Hamrick J. B., Bapst V., Sanchez-Gonzalez A., Zambaldi V., Malinowski M., Tac-
chetti A., Raposo D., Santoro A., Faulkner R., Gulcehre C., Song F., Ballard A., Gilmer J., Dahl G.,
Vaswani A., Allen K., Nash C., Langston V., Dyer C., Heess N., Wierstra D., Kohli P., Botvinick M.,
Vinyals O., Li Y., Pascanu R (2018) Relational inductive biases, deep learning, and graph networks.
1–40. https://doi.org/10.1017/S0031182005008516. arXiv:1806.01261

3292 Multimedia Tools and Applications (2022) 81:3277–3295

https://github.com/gnns4hri/sngnnv2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0031182005008516
http://arxiv.org/abs/1806.01261


3. Bhatt M, Dylla F (2010) A qualitative model of dynamic scene analysis and interpretation in ambi-
ent intelligence systems. Int J Robot Autom 24(3):1–18. https://doi.org/10.2316/journal.206.2009.3.206-
3274

4. Charalampous K, Kostavelis I, Gasteratos A (2017) Recent trends in social aware robot navigation: A
survey, vol 93. Elsevier B.V, Amsterdam, pp 85–104. https://doi.org/10.1016/j.robot.2017.03.002

5. Chen C., Hu S., Nikdel P., Mori G., Savva M (2019) Relational Graph Learning for Crowd Navigation.
arXiv:1909.13165

6. Chen C., Liu Y., Kreiss S., Alahi A (2019) Crowd-robot interaction: Crowd-aware robot navigation with
attention-based deep reinforcement learning. In: International Conference on Robotics and Automation
(ICRA). IEEE, pp 6015–6022. arXiv:1809.08835

7. Chen Y, Liu C, Shi BE, Liu M (2020) Robot navigation in crowds by graph convolutional networks with
attention learned from human gaze. IEEE Robot Autom Lett 5(2):2754–2761. https://doi.org/10.1109/
LRA.2020.2972868

8. Chen YF, Everett M, Liu M, How JP (2017) Socially aware motion planning with deep reinforcement
learning. IEEE Int Conf Intell Robot Syst 2017-Septe:1343–1350. https://doi.org/10.1109/IROS.2017.
8202312

9. Cohen J (1968) Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial
credit. Psychol Bull 70(4):213

10. Cosley D, Baxter J, Lee S, Alson B, Nomura S, Adams P, Sarabu C, Gay G (2009) A tag in
the hand: Supporting semantic, social, and spatial navigation in museums. In: Proceedings of the
27th international conference on human factors in computing systems (CHI’09), pp 1953–1962.
https://doi.org/10.1145/1518701.1518999

11. Ferrer G, Garrell A, Sanfeliu A (2013) Social-aware robot navigation in urban environments. In:
2013 European Conference on Mobile Robots ECMR 2013 - Conference Proceedings, pp 331–336.
https://doi.org/10.1109/ECMR.2013.6698863

12. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum
chemistry. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1263–
1272. JMLR.org

13. Gori M, Monfardini G, Scarselli F (2005) A new Model for Learning in Graph domains. Proc Int Joint
Conf Neural Netw 2:729–734. https://doi.org/10.1109/IJCNN.2005.1555942

14. Haddad S, Lam SK (2020) Self-growing spatial graph networks for pedestrian trajectory prediction.
Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision WACV 2020:1140–
1148. https://doi.org/10.1109/WACV45572.2020.9093456

15. Hansen ST, Svenstrup M, Andersen HJ, Bak T (2009) Adaptive human aware navigation based on
motion pattern analysis. In: Proceedings - IEEE international workshop on robot and human interactive
communication, pp 927–932. https://doi.org/10.1109/ROMAN.2009.5326212

16. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286.
https://doi.org/10.1103/PhysRevE.51.4282

17. Huang Y, Bi H, Li Z, Mao T, Wang Z (2019) STGAT: Modeling Spatial-temporal interactions for human
trajectory prediction. In: Proceedings of the IEEE international conference on computer vision 2019-
october, pp 6271–6280. https://doi.org/10.1109/ICCV.2019.00637

18. James S, Freese M, Davison AJ (2019) Pyrep: Bringing v-rep to deep robot learning. arXiv preprint
19. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. 1–14.

arXiv:1609.02907
20. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics

33(1)
21. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.10

38/nature14539
22. Li Q, Gama F, Ribeiro A, Prorok A (2019) Graph Neural Networks for Decentralized Multi-Robot Path

Planning. arXiv preprint
23. Li Y, Tarlow D, Brockschmidt M, Zemel R (2015) Gated Graph Sequence Neural Networks. 1–20.

arXiv:1511.05493
24. Manso LJ, Jorvekar RR, Faria DR, Bustos P, Bachiller P (2020) Graph neural networks for human-aware

social navigation. In: Workshop of physical agents. Springer, pp 167–179
25. Manso LJ, Nuñez P, Calderita LV, Faria DR, Bachiller P (2020) Socnav1: A dataset to benchmark and

learn social navigation conventions. Data 5(1). https://www.mdpi.com/2306-5729/5/1/7
26. Martins GS, Rocha RP, Pais FJ, Menezes P (2019) Clusternav: Learning-based robust navigation oper-

ating in cluttered environments. In: 2019 International conference on robotics and automation (ICRA).
IEEE, pp 9624–9630

3293Multimedia Tools and Applications (2022) 81:3277–3295

https://doi.org/10.2316/journal.206.2009.3.206-3274
https://doi.org/10.2316/journal.206.2009.3.206-3274
https://doi.org/10.1016/j.robot.2017.03.002
http://arxiv.org/abs/1909.13165
http://arxiv.org/abs/1809.08835
https://doi.org/10.1109/LRA.2020.2972868
https://doi.org/10.1109/LRA.2020.2972868
https://doi.org/10.1109/IROS.2017.8202312
https://doi.org/10.1109/IROS.2017.8202312
https://doi.org/10.1145/1518701.1518999
https://doi.org/10.1109/ECMR.2013.6698863
JMLR.org
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/WACV45572.2020.9093456
https://doi.org/10.1109/ROMAN.2009.5326212
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1109/ICCV.2019.00637
http://arxiv.org/abs/1609.02907
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1511.05493
https://www.mdpi.com/2306-5729/5/1/7


27. Neunert M, De Crousaz C, Furrer F, Kamel M, Farshidian F, Siegwart R, Buchli J (2016)
Fast nonlinear Model Predictive Control for unified trajectory optimization and tracking. In: Pro-
ceedings - IEEE International Conference on Robotics and Automation, ICRA, pp 1398–1404.
https://doi.org/10.1109/ICRA.2016.7487274

28. Pacchierotti E, Christensen HI, Jensfelt P (2005) Human-robot embodied interaction in hallway settings:
a pilot user study. In: IEEE International workshop on robot and human interactive communication,
vol 2005. IEEE, pp 164–171. https://doi.org/10.1109/ROMAN.2005.1513774

29. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L
et al (2019) Pytorch: An imperative style, high-performance deep learning library. arXiv:1912.01703

30. Patompak P, Jeong S, Nilkhamhang I, Chong NY (2019) Learning proxemics for personalized Human-
Robot social interaction. International Journal of Social Robotics. https://doi.org/10.1007/s12369-019-
00560-9

31. Qi S, Wang W, Jia B, Shen J, Zhu SC (2018) Learning human-object interactions by graph parsing neural
networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 11213 LNCS, 407–423. https://doi.org/10.1007/978-3-030-
01240-3 25

32. Ramon-Vigo R, Perez-Higueras N, Caballero F, Merino L (2014) Transferring human navigation
behaviors into a robot local planner. In: IEEE RO-MAN 2014 - 23rd IEEE International Sympo-
sium on Robot and Human Interactive communication: Human-Robot co-existence: Adaptive Interfaces
and Systems for Daily Life, Therapy, Assistance and Socially Engaging Interactions, pp 774–779.
https://doi.org/10.1109/ROMAN.2014.6926347

33. Rios-Martinez J, Spalanzani A, Laugier C (2015) From proxemics theory to Socially-Aware navigation:
a survey. Int J Soc Robot 7(2):137–153. https://doi.org/10.1007/s12369-014-0251-1

34. Rodriguez-Criado D, Bachiller P, Bustos P, Vogiatzis G, Manso LJ (2020) Multi-camera torso pose
estimation using graph neural networks

35. Rodriguez-Criado D, Bachiller P, Manso LJ (2020) Generation of human-aware navigation maps using
graph neural networks. arXiv:2011.05180

36. Rohmer E, Singh SP, Freese M (2013) Coppeliasim (formerly v-rep): a versatile and scalable robot
simulation framework. In: Proc. Int. Conf. on intelligent robots and systems, pp 1321–1326

37. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model.
IEEE Trans Neural Netw 20(1):61–80. https://doi.org/10.1109/TNN.2008.2005605

38. Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling Relational
Data with Graph Convolutional Networks. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10843 LNCS(1), 593–607.
https://doi.org/10.1007/978-3-319-93417-4 38

39. Sperduti A, Starita A (1997) Supervised neural networks for the classification of structures. IEEE Trans
Neural Netw 8(3):1–22

40. Vasquez D, Okal B, Arras KO (2014) Inverse reinforcement learning algorithms and features for robot
navigation in crowds: an experimental comparison. In: 2014 IEEE/RSJ International conference on
intelligent robots and systems. IEEE, pp 1341–1346

41. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017)
Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

42. Vega A, Manso LJ, Macharet DG, Bustos P, Núñez P (2019) Socially aware robot navigation system in
human-populated and interactive environments based on an adaptive spatial density function and space
affordances. Pattern Recogn Lett 118:72–84. https://doi.org/10.1016/j.patrec.2018.07.015

43. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention net-
works. In: Proceedings of the international conference on learning representations 2018, 2015, pp 1–11.
arXiv:1710.10903

44. Vemula A, Muelling K, Oh J (2017) Social attention: Modeling attention in human crowds. arXiv
pp 4601–4607

45. Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y et al (2019) Deep graph
library: A graph-centric, highly-performant package for graph neural networks. arXiv:1909.01315

46. Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph representation
learning with differentiable pooling. In: Advances in neural information processing systems, pp 4800–
4810

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

3294 Multimedia Tools and Applications (2022) 81:3277–3295

https://doi.org/10.1109/ICRA.2016.7487274
https://doi.org/10.1109/ROMAN.2005.1513774
http://arxiv.org/abs/1912.01703
https://doi.org/10.1007/s12369-019-00560-9
https://doi.org/10.1007/s12369-019-00560-9
https://doi.org/10.1007/978-3-030-01240-3_25
https://doi.org/10.1007/978-3-030-01240-3_25
https://doi.org/10.1109/ROMAN.2014.6926347
https://doi.org/10.1007/s12369-014-0251-1
http://arxiv.org/abs/2011.05180
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1016/j.patrec.2018.07.015
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1909.01315


Affiliations

P. Bachiller1 ·D. Rodriguez-Criado2 ·R. R. Jorvekar3 ·P. Bustos1 ·D. R. Faria2 ·
L. J. Manso2

P. Bachiller
pilarb@unex.es

D.Rodriguez-Criado
190229717@aston.ac.uk

R. R. Jorvekar
ronitjorvekar007@gmail.com

P. Bustos
pbustos@unex.es

D. R. Faria
d.faria@aston.ac.uk

1 Robotics and Artificial Vision Laboratory, University of Extremadura, Extremadura, Spain
2 College of Engineering and Physical Sciences, Aston University, B4 7ET, Birmingham, UK
3 Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

3295Multimedia Tools and Applications (2022) 81:3277–3295

http://orcid.org/0000-0003-2616-1120
mailto: pilarb@unex.es
mailto: 190229717@aston.ac.uk
mailto: ronitjorvekar007@gmail.com
mailto: pbustos@unex.es
mailto: d.faria@aston.ac.uk

	A graph neural network to model disruption in human-aware robot navigation
	Abstract
	Introduction
	Graph neural networks
	Graph neural networks basics
	Graph neural networks applied to human-aware navigation

	SocNav2 dataset
	Scenario to graph transformation
	Graph structure
	Node and edge features

	Experimental results
	Conclusions
	References
	Affiliations


