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Abstract The application of robots as a tool to explore
underwater environments has increased in the last decade.
Underwater tasks such as inspection, maintenance, and
monitoring can be automatized by robots. The understand-
ing of the underwater environments and the object recog-
nition are required features that are becoming a critical
issue for these systems. On this work, a method to pro-
vide a semantic mapping on the underwater environment
is provided. This novel system is independent of the water
turbidity and uses acoustic images acquired by Forward-
Looking Sonar (FLS). The proposed method efficiently
segments and classifies the structures in the scene using
geometric information of the recognized objects. Therefore,
a semantic map of the scene is created, which allows the
robot to describe its environment according to high-level
semantic features. Finally, the proposal is evaluated in a real
dataset acquired by an underwater vehicle in a marina area.
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1 Introduction

The ability to construct a map while the robot moves is
essential for performing autonomous tasks and has been
extensively studied in the literature. Map building allows
the robot to develop autonomous skills such as navigation,
interaction with environment and self-localization, among
others. The scientific community has been studying new
ways of representing the map of the environment in the last
decades (an interesting review about mapping can be found
in [18]). Most of the approaches proposed in the literature
to solve this problem explore the spatial information of the
environment (e.g., geometric features like segment lines or
occupancy cells). However, only with the spatial represen-
tation of the environment is difficult to perform other tasks
successfully. Now, this tendency is changing and the sci-
entific community is experiencing an increasing interest in
so-called semantic solutions, which integrate geometrical
information and semantic knowledge [10].

Recently, several advances were made in the semantic
mapping. Generally, ground robots that are able to per-
form tasks planning usually combines semantic knowledge
in their maps (e.g., places classification, such as rooms,
passageways or garden, and labels of objects) [10]. How-
ever, there are very few works in underwater robotics that
consider the semantic map to predict changes in the envi-
ronment and make high-level decisions. In fact, the problem
of underwater mapping has typically been treated with
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geometric information extracted from acoustic or optical
sensors like sonar and RGB cameras [1, 7, 15].

In order to semantically describe and recognize an under-
water environment, a robot needs a system able to extract
high-level knowledge from the scene. Typically, the RGB
sensors have been used in the literature to extract and char-
acterize the robot’s environment. However, in underwater
scenarios, these RGB images provide little information due
to water turbidity.

The sonar offers the benefit to be invariant to the water
turbidity, however, its images are noisy and have distor-
tion problems that make the processing a challenge. The
data captured by a sonar can be summarized in a picture
with an untextured set of ranges whose the most notable
characteristic is the shape of the objects.

Some works propose strategies to identify objects on
acoustic images as [4–6, 11, 14]. However, none of them
recognize objectsandcreate semantic maps in these scenarios.

In the work presented in this paper, a method for seman-
tic mapping is provided. The proposal is able to detect and
recognize objects in the scene allowing the robot to build
a semantic map. The acoustic images are segmented, and
the shape of each cluster is described geometrically. Each
shape is then classified into six different classes (Pole, Boat,
Hull, Stone, Fish and Swimmer) using the well-known Sup-
port Vector Machine (SVM) algorithm. Besides, a tool was
developed to annotate the sonar data, allowing the training
during the supervised model.

This approach was developed to integrate with the topo-
logical graph proposed in a previous work [12], making it
possible to construct more reliable maps for the localization
problem. Since it would be possible to establish a reliabil-
ity relation for each object detected based on its behavior in
the environment. For example, static objects such as stones
and poles have more confidence than dynamic objects such
as fish, boats, and swimmers for the localization problem.

This work also extends our previous contributions [16],
bringing a new statistical results and a new segmentation
stage. A local adjustment of the segmentation parameters is
performed automatically based on the average intensity of
the acoustic bins. Besides, this paper describes with details
the experiments that validate the proposal: new results were

generated evaluating the solution on real data acquired by
FLS in a marina. The Fig. 1 demonstrates the kind of
information that can be obtained by the approach

2 Acoustic Image from a Forward Looking Sonar

The Forward Looking sonars (FLS) are active devices that
create acoustic waves. The waves spread through the under-
water environment in the forwarding direction until striking
an object or being completely assimilated by the medium.

According to the object composition, a portion of the
waves that striked the object are reflected back to the sonar.
The reflected waves that achieve the sonar are recorded by
an array of hydrophones. The signal is processed and dis-
cretized in intensity values called bins. The bins are indexed
in an image according to its return direction θbin and trav-
eled distance rbin as show in Fig. 2. An acoustic image
acquired in a marina area of the Yacht Clube of Rio Grande,
Brazil, is shown in Fig. 1b.

Although the sonars have the benefit of being indepen-
dent of turbidity, their data have some characteristics that
make it difficult to process and extract information. These
characteristics can be summarized in:

– Non-homogeneous resolution: The bin resolution in a
number of pixels changes according to its range rbin

to the sonar. An illustration is shown in Fig. 2, where
two bins are overlapped by a box. The orange box is
farther than the blue box, then, the orange box cover a
bigger area. Hence, the resolution of acoustics images
decreases according to the bin distance rbin. This fact
causes image distortion and objects stretching making
their recognition harder.

– Non-uniform intensity: It is not guaranteed that an
object will always be represented with the same pixel
intensities on the acoustic images. Because of the
signal attenuation caused by the water, distant objects
tend to have a lower intensity than near objects. Typi-
cally this problem is mitigated with a mechanism that
compensates the signal loss according to the traveled
distance. However, the intensity variations can also be

a b

Fig. 1 An example of the semantic map created from an acoustic
image collected in a marina. Both images have a visual intersection.
In a an RGB image captured on the surface (underwater RGB cameras

can not obtain data because of the high-level turbidity conditions). In
b an underwater image captured by a Forward Looking Sonar. The
highlighted objects in red are poles and in green are boat hulls
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Fig. 2 A representative scheme
of image formation of an FLS.
Each bin can be identified on the
polar coordinate system
(θbin, rbin) and has an angular
resolution �θbeam and a range
resolution �ρbin. For this
reason, the most distant bins
have a lower resolution than the
nearest bins. This effect can be
visualized on the blue and
orange highlight polygons

caused by changing the sonar tilt angle or by sensitivity
differences between its transducers.

– The speckle noise: The FLS has a low signal-to-noise
ratioandthespeckle noise in the acoustic image are caused
by mutual interference of the sampled acoustic returns.

– Acoustic shadow: The Acoustic shadow is caused by
objects that block the passage of acoustic waves gen-
erating a region of occlusion in the image. Because it
is an active device, the sonar displacement moves the
acoustic shadows and the occlusion areas significantly
changing the scene.

– Acoustic reverberation and multipath problem: A trans-
mitted wave may travel through indirect paths due to
secondary reflections. Depending on the environment
it can generate different effects that include the cre-
ation of “ghost” objects and thus change the quality and
interpretation of the acoustic image.

– The FLS construction concept: Because of the construc-
tion concept of an FLS, it is not possible to determine
the vertical direction of an acoustic return. Therefore
the acoustic images of an FLS are 2D horizontal projec-
tions of the observed environment. This fact generates
an ambiguity problem because equidistant objects at
different heights are mapped to the same position in the
acoustic image.

Because of these problems, techniques for enhancing,
segmenting and describing of acoustic images, specifically
developed for FLS, are required.

3 Metodology

The proposed method has four steps which include image
enhancement, segmentation, segment description and clas-
sification as indicated in the illustration of Fig. 3.

3.1 Image Enhancement

In this step, an image correction process is applied on the
image to mitigate the non-uniform intensity problem. First,
the sonar insonification pattern is computed by averaging a
significant number of images captured by the same sonar.
The averaged image shows the regions where the pixels have
almost the same intensity values in all images. These regions
represent constant problems associated with sensitivity dif-
ference between the sonar transducers, the overlapping of
acoustic beams and the loss of signal intensity. The insoni-
fication pattern is applied in each acoustic image in order
to normalized theses constant problems. This approach is
similar to the proposed in [9] and [8].

The Fig. 4c shows the insonification pattern found by
averaging 3675 acoustic images. The same insonification
pattern is applied to all images regardless of the FLS
position. Figure 4a shows an acoustic image without cor-
rection, Fig. 4b shows the image after correction. Although
the method reduces non-uniform insonification problems
by removing constant effects on the image, this normal-
ization involves low-intensity values and affects only the
background of the images.

The FLS BlueView P900-130 generates 16-bit images,
i.e. the pixels intensities cover a range of 0-65535. The
nonuniform insonification problems usually occur in an
intensity range of 0-335. The high-intensity regions, which
represent the objects present in the scene, usually are not
affected by this method.

Since the grayscale acoustic images are truncated in
8-bits (all pixels are saturated in 255) for visualization pro-
pose, it is not possible to see the intensities differences
between the light and dark regions of the image. For this reason,
the Fig. 4d, e and f show a surface plot of the image inten-
sities. It is possible to visualize the acoustic intensity peaks,
these peaks are not affected by the correction method.
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Fig. 3 The proposed pipeline of the semantic mapping system. First,
the images are enhanced applying a normalization with the sonar
insonification pattern. On the second stage, the images are segmented
by an intensity peak analyze approach. The third stage describes each

segment extracting geometric and pixel intensities information. On
the last stage, the supervised classifier Support Vector Machine is
trained to recognize the segment descriptions. At the end, the semantic
information of each segment is outputted

This method provides a significant improvement for the
image visualization and mosaic construction problem as in
[8, 9, 13] and for the image segmentation problem.

3.2 Image Segmentation

Because of low signal to noise ratio and the phenomena
described in Section 2, the acoustic images are very noisy
and represent a significant challenge faced by our method-
ology and its quality directly influence the final results.

The main idea of this segmentation approach is to sepa-
rate the objects of interest from the background (seabed). As
objects are more efficient than the seabed to reflect acous-
tic waves. They are characterized by high-intensity spots on
the images. For this reason, we adopted an approach based
on the acoustic image formation to detect peaks of intensity.
Each acoustic beam B is analyzed individually, bin by bin.

The average intensity Imean(b, B) is calculated for each
bin b of a given beam B through Eq. 1.

Imean(b, B) = 1

winsz

b∑

i=b−winsz

I (i, B), (1)

where winsz is the window size, in number of bins, admit-
ted in the averaging; b and i are bin identifiers; B is a
beam identifier; I (i, B) is the intensity of ith-bin of Bth-
beam. The intensity Ipeak(b, B) is an offset of Imean(b, B)

as shown in Eq. 2.

Ipeak(b, B) = Imean(b, B) + hpeak. (2)

Where hpeak is a constant that determines the minimum
height of a peak of intensity. A sequence of bins with an intensity
I (b, B) greater than Ipeak(b, B) are considered part of a peak
and are not considered on the Imean(b, B) computation.

Fig. 4 Application of image
correction method. In a the
image before correction, in b the
corrected image, in c the
insonification pattern obtained
by averaging images. The
images d, e and f show a 3D
surface plot of the respective
(a), (b) and (c) images
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In this sequence, the bin bpeak with the greater intensity
I (bpeak, B) is adopted to adjust the segmentation parameters.

Figure 5 shows in red values of Imean(b, B), in blue val-
ues of I (b, B) and in green values of Ipeak(b, B) of all
bins of a single beam B. The peaks detected bpeak are
represented by colored circles.

The detected bpeak peaks are defined by quadruple {x,

y, I (bpeak, B), Imean( bpeak, B)}, where x, y is the bin
bpeak position in the image. After the detection of all peaks,
a search for connected pixels is performed for each peak,
starting at the peak of lower intensity I (bpeak, B) until the
highest intensity peak.

The 8-way connection is adopted as the neighborhood
criterion by the breadth-first search algorithm. In this
search, all the connected pixels are visited if I (i, j) >

Imean(bpeak, B) or its relative distance to the segment bor-
der is lower than the parameter Dseg in pixels, where I (i, j)

is the pixel intensity.
The distance criterion is adopted to reduce the multi-

segmentation issue of a single object caused when a group
of high-intensity pixels is divided by low-intensity pixels.
This effect is generated by noise or by acoustic shadows.
Figure 6 shows the behavior of the segmentation algorithm
by changing the Dseg parameter.

3.3 Describing Segments

After the segmentation step, each segment is described
using a Gaussian probabilistic function and the following
information about each segment is computed.

a

c d e

f g h

b

Fig. 5 Local tuning parameters for segmentation. The graph repre-
sents the analysis of one acoustic beam B (θbin = 123circ). In this
analysis, the peaks of intensity are detected and used to locally adjust
the segmentation parameters. The blue line represents the bins intensi-
ties I (b, B); the red line represents the mean intensities Imean(b, B),
and the green line represents the minimum intensity for peak detection

Ipeak(b, B). The colored circles represent the detected peaks. As can
be seen in Figure b, each segment is extracted based on the intensity
and position of the detected peaks in Figure (a). The behavior of Ipeak

calculated by Eqs. 1 and 2 can be observed in the figures (c), (d), (e)
when the parameter hpeak is changed and in the figures (k), (l), (m)
when the parameter winsz is changed
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a b

c d

e f

Fig. 6 Segment extraction step, after detecting the intensity peaks a
search for connected pixels is performed. This images shown the seg-
ment extraction of the same image change the parameter Dseg . The
images on the left show the pixel search process; the visited pixels
(included on the segment) are shown in blue, the segment contour

pixels are shown in green and the visited pixels by the distance criteria
is shown in red. The right images show the extracted segments. On
figures a and b were used Dseg = 1; on figures c and d were used
Dseg = 4 and on figures e and f were used Dseg = 10

Fig. 7 A sample acoustic image
of the training set generated by
the developed tool. A
demonstration video is available
on https://youtu.be/
G6c1pBVKI1E

Fig. 8 Satellite image of the
marina with the trajectory
traveled by the ROV during the
acquisition of the Dataset
ARACATI 2014 [17]. Map data:
Google, DigitalGlobe 2016

https://youtu.be/G6c1pBVKI1E
https://youtu.be/G6c1pBVKI1E
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Table 1 Dataset information

Class name Number Training Validation

Pole 187 121 66

Boat Hull 128 83 45

Stone 91 59 32

Fish 90 58 32

Swimmer 14 9 5

Total 510 330 180

Initially, width and height are computed using a covari-
ance matrix that relates the x and y position of each
pixel of the segment. The eigenvalues and eigenvectors of
the covariance matrix is computed using Singular Value
Decomposition (SVD). The width is defined as the largest
eigenvalue and height is defined as the second largest
eigenvalue.

Furthermore, the segments area is computed using the
Green’s theorem that gives the relationship between a line
integral around a simple closed curve. This area is com-
puted using the implementation of the OpenCV library [2].
Finally, we determine the convex hull area of the segment,
the perimeter of the segment, the mean and the standard
deviation of the acoustic intensity of each segment.

Almost all data are geometrical information, however the
mean and the standard deviation of the intensities represents
the acoustic data.

Based on these information, we defined two set of fea-
tures to be used in the next step. The first 2D features is only
composed by width and height. In addiction to the width and
height, we defined the 10D features. They are composed
of Inertia Ratio, i.e. width divided by the height, mean and
standard deviation of the acoustic returns, segmented area
and convex hull area. Furthermore, we compute the convex-
ity, i.e. the segmented area divided by the convex hull area,
the perimeter and the number of pixels in the segment.

3.4 Segment Classification

In this stage, the supervised classifier Support Vector
Machine (SVM) is adopted to classifier each segment. The
SVM classifier models the data as a k-dimensional vector
and defines an optimal hyperplane that best classifies the
vectors depending on its data. The hyperplane definition is
an iterative optimization process executed on the training
step of the classifier.

A tool was developed to automatically segment the
acoustic image, to allow the manual annotation of the seg-
ments by a graphical interface and to automatically classify
the segments. The tool was developed with the OpenCV
library [2] and a screenshot with some annotated segments
is shown in Fig. 7.

Table 2 Segmentation parameters

Parameter Value

Bearing 130 degrees

nBeams 768 beams

Hpeak 132

Winsz 100 bins

Dseg 4 pixels

MinSegSize 20 pixels

MaxSegSize 9000 pixels

The SVM implementation is based on the libSVM library
[3] which presents several types of kernels that allow us to
deal with nonlinear classification. The available kernels are
Polynomial, Radial Basis Function (RBF) and Sigmoidal
kernels. Since the RBF kernel is know as the best choice in
most cases because of its capability to handle with nonlin-
ear classification, it was the adopted kernel for the segment
classification. As documented in [3], the kernel parameter
function γ and C must be defined.

To define theses parameters an auto training function
builds a grid with the classification performances by alter-
ing the two parameters (γ , C). The performance of the
classifier is calculated by cross validation. The training
data are divided into k groups, one of them is adopted for
cross-validation and the others train the classifier. The com-
bination which results in the best performance is chosen as
the optimal parameter value. The range and variation step
of the parameters to build the grid must be defined. In this
work we adopted a grid starting in 0.1, ending in 60 with a
step of 0.01 for both parameters γ and C.

4 Experimental Results

The experimental results were obtained using real acoustic
images from the dataset ARACATI 2014 in which a Forward

Table 3 Ranges values for normalization

Dimension name Min Max

Width 1.84 170.09

Height 5.86 817.85

Inertia Ratio 0.07 0.91

Std. Intensity 44.92 1293.59

Mean Intensity 164.76 403.15

Area 0 35205.5

Hull Area 13 107622

Convexity 0 0.83

Perimeter 0 6482.33

Pixel Count 20 9000
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Fig. 9 Segmentation results using the parameters of Table 2. Pixeis in red represent the segment contour, pixeis in green represent the convex
hull. The information extracted from each segment is shown on Tables 4 and 5

Looking Sonar (FLS) was used. The images were processed
and the segments were manually annotated using the devel-
oped tool. The results were obtained using 2D features and
10D features as described in Section 3.3.

4.1 Dataset ARACATI 2014

The dataset ARACATI 2014 was made available in [17].
The dataset is composed by 9659 acoustic images recorded
in a marina by a 2D Forward Looking Sonar (FLS) Teledyne
BlueView P900-130 mounted in mini Remote Operated
Vehicle (ROV) LBV300-5 manufactured by Seabotix.

The FLS Teledyne BlueView P900-130 has an angu-
lar resolution (beam width) �ρbin = 1circ and a range

Table 4 Feature information

Pole Boat Stone

Dim. A1 A2 B1 B2 C1 C2

Width 8.3 10.7 31.1 34.2 78.0 74.7

Height 26.3 19.7 106.1 130.8 755.9 772.5

Inertia Ratio 0.31 0.54 0.29 0.26 0.10 0.09

Std. Intensity 395.2 647.4 115.9 145.5 157.1 147.3

Mean Intensity 291.9 346.5 189.9 195.8 201.9 193.3

Area 24 10.5 680.5 1293.5 31339.5 28367.5

Hull Area 195 171.5 3457.5 5181.5 82339.5 80409.5

Convexity 0.123 0.061 0.196 0.249 0.380 0.352

Perimeter 112.8 47.3 307.5 253.8 3138.1 25332.4

Pixel count 85 66 650 1020 6679 7192

resolution �θbeam = 0.0254 m. The generated images are
16-bits gray scale with a resolution of 1429 × 781.

During the entire path, the ROV remained close to the
water surface to keep the Differential Global Positioning
System (DGPS) working. The marina structures such as poles,
piers and boat hulls and stones are visible in the acoustic images.
Some of these objects are highlighted in Fig. 1. The Fig. 8
shows the entire path traveled by the ROV at the marina.

4.2 The SVM Training Dataset

The SVM training dataset was regenerated on this extended
version using the developed tool. The training data con-
sists a total of 510 segments over 257 acoustic images

Table 5 Feature information continuation

Fish Swimmer

Dim. D1 D2 E1 E2

Width 4.8 3.1 22.1 14.7

Height 8.2 9.7 38.3 31.6

Inertia Ratio 0.58 0.31 0.57 0.46

Std. Intensity 73.2 112.4 134.2 136.7

Mean Intensity 195.4 204.7 203.0 202.5

Area 1.5 4 276.5 251.5

Hull Area 30.5 26 902.5 555.5

Convexity 0.049 0.153 0.306 0.452

Perimeter 15.2 21.4 115.8 118.2

Pixel Count 24 27 218 166



J Intell Robot Syst

Table 6 2D feature results
Parameters Result Hit(%)

γ C k All Pole Boat Stone Fish Swimmer Figure

59.334 27.680 2 85 86.3 82.2 87.5 96.8 0 10a

59.334 53.940 5 84.4 86.3 80 90.6 93.7 0 10b

6.024 44.579 10 86.6 90.9 80 93.7 93.7 0 10c

Overfitting test

41.55 28.45 – 90 94.6 92.1 85.7 95.5 35.7 10d

which were manually classifieds in one of the five differ-
ent classes: Pole, Boat Hull, Stone, Fish and Swimmer.
The data was separated into two group, the validation data
(35%) and the training data (65%). To avoid the overfit-
ting problem, the validation set never is used in the training
step, and the training set never is used to evaluate the SVM
classifier.

The number of segments in each class is shown on
Table 1. The adopted parameters of the segmentation algo-
rithm are shown on Table 2, where Bearing is the opening
of the sonar field of view, nBeams is the number of bins
and MinSegSize and MaxSegSize define respectively the
minimum and maximum size of a segment in pixels. The
parameters Hpeak , Winsz and Dseg were previously defined

in Section 3.2. This parameter was empirically defined
doing several tests.

To avoid problems with the scale between the dimen-
sions of the vectors so that one dimension becomes more
important than others because it is on a larger scale. All data
are normalized using the maximum and minimum values of
each dimension found the training dataset, theses values are
shown on Table 3.

The object recognition on acoustic images is not a triv-
ial task, as shown on Fig. 9, the shape of the segment
is the most distinctive feature for recognition. A quantita-
tive information extracted from the segments is shown on
Tables 4 and 5 where the highest and lowest values are high-
lighted in bold. It is possible to see that the stones are the

Fig. 10 Images generated to
show the classifier hyperspace
and its hyperplanes that separate
each class for each one of the six
tests performed using 2D
features. Each class is
represented by a color such as
fish is yellow, pole is green, boat
hull is red, swimmer is blue and
stone is cyan. The background
colors represent the hyperplanes
and each circle represents one
object of the ground truth data
set
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Table 7 10D feature results
Parameters Result Hit(%)

γ C k All Pole Boat Stone Fish Swimmer

1.311 53.940 2 71.6 78.7 77.7 93.7 34.3 20

0.235 49.037 5 82.7 74.2 86.6 90.6 96.8 20

1.442 11.739 10 86.1 81.8 91.1 90.6 93.7 20

Overfitting test

41.55 28.45 – 99.6 99.4 100 100 98.8 100

largest segments; the fish are the smallest segments and the
poles is the most convex segments.

4.3 Results Using 2D Features

Firstly, we performed experiments using 2D features. The
first 3 tests were carried unsing 330 segments of the tranning
set and the auto training function, that estimate the better
parameters γ and C using cross-validation of k-subsets of
the training data.

The classifier performance was evaluated comparing the
obetened classification with the annotated classification on
the ground truth for the 180 segments of the validation data.
The results are shown in Table 6.

Using only the width and height of the segments, we
correctly classified 86.1% of the validation data using 10
subgroups for cross validation. The classes stones and fish
had the highest hit rate (93.7%) and the swimmer class had
no hit. The main reason for the swimmer class has no hit is
the dataset limitation that has few swimmer images.

For the case of 2D features, interesting images can be
generated to show the classifier hyperspace and its hyper-
planes that separate each class. These images are shown
on Fig. 10, where each circle represents a segment and
its position represent the extracted values, e.g. width and
height.

The horizontal axis represents the segment width and
grows to right, and the vertical axis represents the segments
height and grows to down.

Each class is represented by a color such as fish is yel-
low, pole is green, boat hull is red, swimmer is blue and
stone is cyan. The background color represents the classi-
fier hyperplanes and each circle color represent one segment
classification annotated on ground truth.

Another difficulties of this approach is that there are seg-
ments with similar width and height and does not belong
to the same class. For this reason, we did a test forcing the
overfitting of the classifier using all available data, e.g. the
510 segments. As shown in the last line of Table 6, 90% of
the segments were correctly classified.

For this reason we consider more information about the
segment to achieve better results on 10D feature.

4.4 Results Using 10D Features

The same tests performed with 2D features was made to
10D feature. The results are shown on Table 7 revealing a
similar behavior for both approaches. The 2D feature got
a slightly higher hit rate (86.6% against 86.1% of 10D
feature). The main difference was found in the forced over-
fitting test. The classifier hit 99.6% of the segments using
10D feature against 90% of 2D feature.

Despite the possible overfitting, this result shows that the
classifier is able to distinguish the five classes at least of the
problem.

5 Conclusion

A method to automatically detect and classify objects in
acoustic images of a 2D Forward Looking Sonar (FLS)
is proposed. The object segmentation is performed by an
algorithm specifically developed for acoustic images. A seg-
ment description approach was suggested using geometric
and acoustic intensities reflected by the objects. The object
classification is performed by the Support Vector Machine
(SVM) classifier using the Radial Basis Function (RBF)
kernel.

A tool was developed to annotate the image segments and
perform automatic object classification. The results showed
that it possible to identify and classify objects in real envi-
ronments such as a marina allowing the creation of semantic
maps.

The semantic map can be adopted to assist in mapping
and localization of an autonomous robot. For example, the
information of static objects such as classes pole and stones,
and dynamic objects such as swimmer, boat hull and fish
can be used to build a more accurate environment map for
autonomous navigation.

Future works will be focused on performing new tests
in larger and differents environments, produce new public
datasets, explore and make comparisons with new clas-
sification approaches like Convolutional Neural Network
(CNN) or traditional classifiers such as Random Trees (RT)
and K-Nearest Neighborhood (KNN).
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Finally, weare interested to integrate the proposed method
in a Simultaneous Localization and Mapping (SLAM) approach
and perform autonomous navigation using semantic information.
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