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Abstract: This work proposes a new feature detection and description approach for mobile
robot navigation using 2D laser range sensors. The whole process consists of two main mod-
ules: a sensor data segmentation module and a feature detection and characterization module.
The segmentation module is divided in two consecutive stages: First, the segmentation stage
divides the laser scan into clusters of consecutive range readings using a distance-based cri-
terion. Then, the second stage estimates the curvature function associated to each cluster and
uses it to split it into a set of straight-line and curve segments. The curvature is calculated
using a triangle-area representation where, contrary to previous approaches, the triangle side
lengths at each range reading are adapted to the local variations of the laser scan, removing
noise without missing relevant points. This representation remains unchanged in translation or
rotation, and it is also robust against noise. Thus, it is able to provide the same segmentation
results although the scene will be perceived from different viewpoints. Therefore, segmen-
tation results are used to characterize the environment using line and curve segments, real
and virtual corners and edges. Real scan data collected from different environments by using
different platforms are used in the experiments in order to evaluate the proposed environment
description algorithm.

Keywords: laser scan data segmentation; mobile robot navigation; adaptive
curvature estimation
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1. Introduction

Extracting useful information from the environment has an important effect on the robot naviga-
tion process. Simultaneous localization and map building (SLAM), path planning, or even a virtual
reconstruction of the scene for supervising the robot navigation are different examples where a detailed
description of the environment can usually improve their results. To address this issue, an appropriate
representation of the working environment of the mobile robot must be acquired, which is not trivial.
Many factors and physical constraints affect the reliability of such representation [1].

One of the first tasks in the navigation system design is to determine the type of sensor required to ob-
tain the desired description in a particular environment. The most appropriate sensor for the application
depends on the size of the operation area, the environmental conditions, and the required representation
level. Indeed, the most important factor that determines the quality of the representation is this external
sensor, and above all, its accuracy. With regard to the mobile robotic tasks, an accurate localization
in known or unknown environments is essential for autonomous mobile robot navigation. Pure dead-
reckoning methods such as odometry are prone to drift, and an estimate is needed to reduce the growing
unbounded errors [2]. In order to provide a precise position estimation, external sensors, like sonar or
laser range finder sensors, are extensively used in robotics, especially in indoor environments [3–6]. In
these sensors, the accuracy is a function of their specifications and the type of features used to repre-
sent the environment. Other kinds of commonly used sensors in robotics are cameras, more specifically,
monocular, stereo, or trinocular vision systems [7–12]. In these cases, the accuracy of the sensor is a
function of the captured image resolution and the features used in the representation.

In general, the structural features commonly found in the environment are assumed to be invariant to
height (e.g., walls, corners, columns). Using this assumption, a planar representation would be adequate
for feature extraction and a distance-based sensor can be used. Among different types of sensors, 2D
laser range finders have been increasing popular during the last decade, because they provide dense and
accurate range measurements with high angular resolution and sampling rates. Figure 1(a) illustrates
two classical laser range sensors used in robotics: a LMS200 from SICK, and a HOKUYO URG-04LX.
On the other hand, in terms of cost, it is an affordable device for most mobile robotics systems.

Once the sensor is chosen, the second task that we must address is to match the obtained data with the
expected data available in a map. To this end, two approaches have been used in mobile robotics: point-
based and feature-based matching. Feature-based approaches increase the efficiency and robustness of
this process by transforming the acquired raw sensor data into a set of geometric features. Because
they are more compact, these feature-based approaches require much less memory than the point-based
approaches and can still provide rich and accurate information [13]. Besides, these methods are more
robust to the noise resulted from spurious measurements and unknown objects. Thus, feature-based
model is a typical choice for the map representation, which allows the use of multiple models to describe
the measurement process for different parts of the environment.

This work extends the CUrvature-BAsed (CUBA) approach for environment description: a feature-
based approach proposed by Núñez et al. [14–16]. In these previous works, the authors present a
feature-based approach which employs multiple models to characterize the environment. Specifically,
the laser scan is analyzed to detect rupture points, breakpoints and four types of landmarks: line seg-
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ments, corners, center of curve segments and edges [14–16] [see Figure 1(b)]. With respect to these
previous works, a new laser scan data segmentation based on curvature information is proposed. In
order to improve the robustness against noise, this curvature is calculated using a triangle-area represen-
tation where the triangle side lengths at each range reading are adapted to the local variations of the laser
scan, removing noise without missing relevant points. Besides, in this paper, the proposed environment
representation has been used inside a SLAM approach based on the Extended Kalman Filter (EKF).

Figure 1. (a) Two laser range sensors widely used in Robotic: a LMS200 from SICK and
a HOKUYO URG-04LX. (b) Natural landmarks detected and characterized in this work:
breakpoints, rupture points, line and curve segments, corners and edges.

(a) (b)

This work has been organized as follows: Firstly, the most popular methods available in the literature
for laser scan data segmentation are briefly described in Section 2. Next, a multi-scale method based
on the curvature estimation of the scan data is presented in Section 3. Section 4 describes some im-
provements to the proposed segmentation module of the approach which have been included in order to
increase its robustness against noise and its invariance to translation and rotation. Experimental results
and a brief discussion have been included in Sections 5 and 6, respectively. Finally, a brief glossary is
given, which includes a list of words related to the robotics field.

2. Laser Scan Data Segmentation Algorithms

2.1. Problem Statement

Scan data provided by 2D laser range finders are typically in the form {(r, ϕ)i|i=1...NR
}, on which

(r, ϕ)i are the polar coordinates of the ith range reading (ri is the measured distance of an obstacle to
the sensor rotating axis at direction ϕi), and NR is the number of range readings. Figure 2(a) represents
all these variables. It can be assumed that the noise on both measurements, range and bearing, follows
a Gaussian distribution with zero mean and variances σ2

r and σ2
ϕ, respectively. The aim of segmenting a
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laser scan is to divide it into clusters of range readings associated to different surfaces, planar or curves,
of the environment. There are two main problems in laser scan segmentation:

• How many segments are there?

• Which range readings belong to which segment?

In order to establish the limits of these segments, these problems can be stated as the search for the range
readings associated to the discontinuities in the scanning process or to the changes in the orientation of
the scan [see Figure 2(b)].

Figure 2. (a) Scan reference frame variables. (b) Problem statement.

(a) (b)

To detect these changes, two main types of techniques have been proposed in the literature. The most
popular ones try to find specific geometric features in the scan. Specifically, polygonal approximation
techniques originated from computer vision have been widely used to deal with office-like environments,
which can be described using line segments. This segmentation process is achieved by checking some
heuristic line criteria (i.e., error bound) while concatenating consecutive points. On the other hand,
the laser scan data can be represented by a local descriptor which can be analyzed to extract the set of
dominant points which correctly segments the scan into curve and line segments.

2.2. Polygonal Based Methods

Among the polygonal-based techniques, the incremental and split-and-merge (SM) approaches are
probably the most popular and simple line segments extractors. The split-and-merge algorithm fits a line
segment to the set of range readings, and it then divides this line into two new line segments if there
is a range reading whose distance to the line is greater than a given threshold. This splitting process
is then iteratively applied to the newly generated line segments. Finally, when all line segments have
been checked, collinear segments are merged. This algorithm has been used to extract line segments
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in many robotic research [17–20]. The incremental algorithm, also known as Line-Tracking, starts with
two close points and adds the next scan point to the end of the segment when a predefined line condition
is satisfied. If the criterion is not achieved, the current line is finished and a new line is started in the
next point.

Similar to the SM algorithm, the iterative-end-point-fit method (IEPF) provides a polygonal approxi-
mation to the laser scan at a low cost [18]. The procedure is similar to the first part of the SM algorithm.
A line is fitted to a set of scan points simply by connecting the end points of two sets. The point with the
maximum distance to the line is detected and the set is split up if the distance exceeds a fixed threshold.
This splitting process is repeated until the maximum distance is lower than the threshold for all sets.

In order to avoid the need to guess the number of initial clusters, Borges and Aldon [19] employ
fuzzy clustering in a split-and-merge framework. The split phase is based on the IEPF method, where
for each iteration a set of scan points is divided into two sets if a threshold established for a dispersion
measure is not satisfied. Unlike IEPF, the obtained set does not obey the acquired order of the points. In
the merge phase, the two closest lines to a reference line are selected as fusion candidates. The fused line
is the one that gives the smallest dispersion with the reference line and the given threshold for a single
line is fulfilled.

Other model-based popular approaches are based on the Hough transform. The Hough transform has
been successfully applied to detect lines in intensity images and it has been brought into robotics for
achieving this same aim for scan images [21, 22]. The set of scan data points is sorted into subsets of
roughly collinear points using the Hough transform that is based on a voting strategy to determine the
best fit for the data subset. The main drawback of this method is the difficulty in choosing a correct size
for the voting grid. The parametric space must be discretized and the accuracy is highly affected in real
time applications. In order to avoid this problem, the approach proposed by Bandera et al. [23] employs
a variable bandwidth mean shift algorithm to independently cluster the items of the parameter space in a
set of classes.

Finally, the aim of Random Sampling Segmentation Algorithms is to find a suboptimal probabilistic
model to classify the data points and to separate inliers from outliers. Usually, RANdom SAmpling
Consensus (RANSAC) is used to detect outliers in a set of data, because it is an efficient algorithm
for robust fitting of any kind of models in the presence of data outliers. In this scheme, an algorithm
for robust data segmentation is presented in [24]. It is adapted to scale space by using the Adap-
tive Scale Sample Consensus (ASSC), a modification of RANSAC involving an adaptive scale esti-
mation. The ASSC is a kernel-based scale estimator based on the mean shift method for the data driven
scale estimate.

2.3. Curvature-Based Methods

Curvature functions basically describe how much a curve bends at each point. Peaks of the curvature
function correspond to the corners of the represented curve and their height depends on the angle at these
corners. Flat segments whose average value is larger than zero are related to curve segments and those
whose average value is equal to zero are related to straight line segments. Figure 3(a) presents a curve
yielding two corners (points 2 and 3) and a curve segment (from point 3 to 4). Peaks corresponding to
2 and 3 can be appreciated in its curvature function [Figure 3(b)]. It also shows that segment 3-4 has an
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average value greater than zero, but it is not flat due to noise. Nevertheless, peaks in that segment are
too low to be considered as the corners of the curve. Finally, segments 1-2 and 2-3 present a curvature
average value near to zero, as expected in line segments.

Figure 3. (a) Segment of a single laser scan (¤-breakpoints, o-corners). (b) Curvature
function associated to (a).

(a) (b)

In a general case, the curvature κ(t) of a parametric plane curve, c(t) = (x(t), y(t)), can be calculated
as [25, 26]

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ(t)2 + ẏ(t)2)3/2
(1)

This equation implies that estimating the curvature involves the first and second order directional
derivatives of the plane curve coordinates, (ẋ, ẏ) and (ẍ, ÿ), respectively. This is a problem in the case
of computational analysis where the plane curve is represented in a digital form [26]. In order to solve
this problem, two different approaches have been proposed:

• Interpolation-based curvature estimators. These methods interpolate the plane curve coordinates
and then differentiate the interpolation curves. Thus, Mokhtarian et al. [25] propose to filter the
curve with a one-dimensional Gaussian filter. This filtering removes the plane curve noise.

• Angle-based curvature estimators. These methods propose an alternative curvature measure based
on angles between vectors, which are defined as a function of the discrete curve items. Thus, the
curve filtering and curvature estimation are mixed by Agam et al. [27], which define the curvature
at a given point as the difference between the slopes of the curve segments on the right and left side
of the point, where slopes are taken from a look-up table. The size of both curve segments is fixed.
Liu et al. [28] compute the curvature function by estimating the edge gradient at each plane curve
point, which is equal to the arctangent of its Sobel difference in a 3x3 neighborhood. Arrebola
et al. [29] define the curvature at a given point as the correlation of the forward and backward
histograms in the k-vicinity of the point, where the resulting value is modified to include concavity
and convexity information.
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Due to the characteristic noise associated to the curvature estimation, all these algorithms implicitly
or explicitly filter the curve descriptor at a fixed cut frequency to remove noise and provide a more robust
estimation of the curvature at each plane curve point (single scale methods). However, features appear
at different natural scales and, since most methods filter the curve descriptor at a fixed cut frequency,
only features unaffected by such a filtering process may be detected. Thus, in the case of angle-based
curvature estimators, algorithms described above basically consist of comparing segments of k-points
at both sides of a given point to estimate its curvature. Therefore, the value of k determines the cut
frequency of the curve filtering. In these methods, it is not easy to choose a correct k value: when
k is small, the obtained curvature is very noisy and, when k is large, corners which are closer than k

points become missing. To avoid this problem, some methods propose iterative feature detection for
different cut frequencies, but they are slow and, in any case, they must choose the cut frequencies for
each iteration [30]. Another solution is to adapt the cut frequency of the filter at each curve point as a
function of the local properties of the shape around it [31].

Both approaches have been applied to laser scan segmentation. Thus, the iterative curvature scale
space (CSS) was used by Madhavan and Durrant-Whyte [32] to extract stable corners. This algorithm
convolves the curve descriptor with a Gaussian kernel and imparts smoothing at different levels of scale
(the scale being proportional to the width of the kernel). From the resulting curve descriptor, features
associated to the original shape can be identified [25]. In order to achieve a robust determination of
dominant points, the algorithm detects them at the most coarse scale σmax, but localizes the dominant
point position at the finest scale σmin. In order to avoid a slow iterative estimation of the curvature, an
adaptive algorithm was employed by Núnẽz et al. [16] to extract corners, line and curve segments from
the laser scan data.

3. CUrvature-BAsed Environment Description Framework

The environment description algorithm described in this paper is divided in two main stages. The
first one is a segmentation stage, which divides the scan data acquired by the laser range sensor to a
set of point clusters associated to line or corner segments. The next stage detects and characterizes
natural landmarks (i.e. line and curve segments, corners and edges) according to these clusters, through
both extracting their pose and estimating the uncertainties. This complete characterization allows the
use of these features on a later robotic navigation tasks (e.g., SLAM). This work is based on previous
papers [14, 16]. In order to improve the robustness against noise in the segmentation stage, this paper
includes a novel technique for affine invariant curvature estimation. The new segmentation module is
described in the Section 4.

3.1. Segmentation Algorithm

In this section, the segmentation algorithm developed inside the CUrvature BAsed environment de-
scription framework (CUBA in short) is presented. Instead of using a slow, iterative approach, dominant
points can be robustly detected by adapting the scale to the local surroundings of each range reading.
This solution has been adopted by Núñez et al. [14, 16]. The adaptive curvature approach allows to
rapidly segment the laser scan into curve and line segments.
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In this approach, the segmentation is achieved in two consecutive steps. The first type of segmenting
points may arise from the absence of obstacles in the scanning direction (rupture points) or from the
change of surface being scanned by the sensor (breakpoints) [19]. Rupture points cannot be detected
by making inferences about its possible presence. They indicate a discontinuity during the measure-
ment and its presence must be informed by the range finder [14]. On the contrary, breakpoints are de-
tected by making inferences about the possible presence of discontinuities in a sequence of valid range
data [14, 19]. Basically, the aim of a breakpoint detector is to verify if there exists a discontinuity be-
tween two consecutive range readings (r, ϕ)n and (r, ϕ)n−1. This algorithm allows to reject isolated
range readings, but it leads to an under-segmentation of the laser scan, i.e., extracted segments between
breakpoints typically group two or more different structures (see Figure 4). In order to avoid this prob-
lem, once the whole laser scan is divided into sets of consecutive range readings, a second segmentation
criterion is applied into each set. This approach is focused on the correct selection of the set of domi-
nant points present into a part of the scan bounded by two consecutive breakpoints. If the whole laser
scan is divided into different sets of consecutive range readings by the breakpoint detector, this specific
problem can be stated as the estimation of the curvature function associated to each set. Therefore, this
one is based on the curvature associated to each range reading: consecutive range readings belong to the
same segment while their curvature values are similar. To perform this segmentation task, the adaptive
curvature function associated to each segment of the laser scan is computed [16]. Then, this information
is employed to segment the laser scan into clusters of homogeneous curvature. The whole process to
achieve this segmentation task is shown with details in [16]. Figure 5 (a) shows a real environment used
to illustrate the CUBA framework. The scan data provided by the sensor and the curvature estimates by
the segmentation stage are drawn in Figures 5 (b) and 5 (c), respectively.

Figure 4. (a)–(b) Laser scan and extracted breakpoints (squares). It must be noted that
segments of the laser scan which present less than ten range readings are not taken into
account (they are marked without boxes in the figures).

(a) (b)
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3.2. Natural Feature Extraction and Characterization

As can be seen in Figure 5 (c), the segmentation algorithm can directly provide two different natural
features: line and curve segments [16]. In order to include these items as features in a compact form
to be used in a subsequent process, it is necessary to characterize them by a set of invariant parameters,
and moreover, to estimate their uncertainties. This is typically achieved by fitting parametric curves to
measurement data associated to each line or curve segment and by evaluating the uncertainty associated
to the measured data. Thus, line and curve segments can be used as stable features. Finally, other types
of features can be extracted and characterized as corners or edges. The method used to characterize these
natural landmarks is based on our previous work [14]. This section introduces the method for extracting
and characterizing natural features from the segmented laser data.

Figure 5. (a) A real environment where CUBA algorithm has been tested; (b) scan data
acquired by the laser range sensor; (c) curvature function associated to (a) using the method
proposed in [16]; and (d) natural landmarks (triangle-corners, square-end-points of line
segments, o-circles) with their associated uncertainties (ellipses in the images).

(a)

(b) (c) (d)

1. Line segments

In order to provide precise feature estimation it is essential to represent uncertainties and to propa-
gate them from single range reading measurements to all stages involved in the feature estimation
process. As previously mentioned, the methods try to fit parametric curves to each segmented
data. An approach for line fitting is to minimize the sum of square perpendicular distances of
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range readings to lines. This yields a nonlinear regression problem which can be solved for polar
coordinates [33]. The line in the laser range finder’s polar coordinate system is represented as

r =
d

cos(θ − φ)
(2)

where θ and d are the line parameters in the normal form representation:

x cos θ + y sin θ = d (3)

being θ the angle between the X axis and the normal of the line and d the perpendicular distance
of the line to the origin. Then, the orthogonal distance di of a range reading, (r, φ)i, to this line is

di = ri cos(θ − φi)− d (4)

Under the assumption of known uncertainties, a weight for each measurement point can determine
and fit the line in the generalized least squares sense, whose solution is (see [14] for further details)

θ = 1
2
arctan

(∑
i r2

i sin 2φi− 2
n

∑
i

∑
j rirj cos φi sin φj∑

i r2
i cos 2φi− 1

n

∑
i

∑
j rirj cos(φi+φj)

)

d =
∑

i ri cos(φi−θ)

n

(5)

Figure 5 (d) presents the detected landmarks corresponding to the scan data acquired by the sensor
in 5 (b). In this case, Figure 5 (d) shows the line segments extracted using the described approach
(end-points of the line segments are illustrated as squares). These end-points are determined by
the intersection between this line and the two lines which are perpendicular to it and pass through
the first and last range readings.

2. Curve segments

Although many circle fitting methods have been proposed, it is a common choice to achieve this
by minimizing the mean square distance from the data points to the fitting circle. Basically, the
Least Squares Fit (LSF) assumes that each data point is the noised version of the closest model
point. This assumption is valid when data points are not contaminated with strong noise.

Let the data points be {xi, yi}|i=1...m (m > 3), with an uncertainty ellipse specified in terms of the
standard deviations pi and qi, and the correlations ri. The problem is to obtain the center (xc, yc)

and the radius ρ of the circle C which yields the best fit to this data. It is also required to determine
the variance matrix associated to the circle parameters.

This problem is stated as the minimization of the difference between the set of points {xi, yi}
and their corresponding points {xc + ρ cos φi, yc + ρ sin φi} which lie on C. This difference is
summarized by the 2m-element error vector ε:

ε = (x1 − (xc + ρ cos φ1), y1 − (yc + ρ sin φ1), ...,

xm − (xc + ρ cos φm), ym − (yc + ρ sin φm))T

= (∆x1, ∆y1, ...∆xm, ∆ym)T

(6)
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This error vector has the known 2mx2m block diagonal variance matrix V = diag(V1...Vm),
where

Vi =

[
p2

i ri

ri q2
i

]
(7)

Then, assuming that the errors are normally distributed, the maximum likelihood (ML) problem
consists of minimizing

minimize εT V −1ε (8)

with respect to the vector b = (φ1, ..., φm, xc, yc, ρ)T .

In order to solve the minimization problem, the classical Gauss-Newton algorithm with the
Levenberg-Marquardt correction [34, 35] is used. This algorithm finds the vector b which min-
imizes 8 in an iterative way. It approximates the objective function with the square of the norm of
a linear function. Thus, at each iteration, the linear least-squares problem is solved

minδb||ε′(k) −∇ε′(k) · δb||2 (9)

where ∇ε′(k) is the Jacobian matrix of first partial derivatives of ε′ with respect to b and ε′(k) is ε′,
both evaluated at b(k). A detailed description of the Levenberg-Marquardt algorithm can be found
at [35]. In this case, the starting estimate for the centre coordinates and radius is obtained using
the Taubin’s approximation to the gradient-weighted algebraic circle fitting approach [34].

Finally, to obtain the variance matrix of the center coordinates and radius, an estimate of the
variance matrix of the vector b must be obtained. Further details about the fitting problem are
shown in [15]. Figure 5 (d) draws the circle segment extracted using the described approach for
the scan data provided by the sensor in Figure 5 (b).

3. Real and virtual corners

As pointed out by Madhavan and Durrant-White [32], one of the main problems of a localization
algorithm only based on corner detection is that the set of detected natural landmarks at each time
step can be very limited, specially when it works on semi-structured environments. This generates
a small observation vector that does not provide enough information to estimate the robot pose.
To address this problem, the description algorithm described in this paper uses real and virtual
corners as natural landmarks of the robot environment. Real corners are due to change of surface
being scanned or change in the orientation of the scanned surface. Thus, they are not associated
to laser scan discontinuities. On the other hand, virtual corners are defined as the intersection of
extended line segments which are not previously defined as real corners. In order to obtain the
corner location, it must be taken into account that failing to identify the correct corner point in the
data can lead to large errors that increase with the distance to the detected corner (see Figure 6).
Therefore, it is usually not a good option to locate the corner in one of the scan range readings.
Another choice is to extract the corner location as the intersection of the two associated lines. Thus,
the corner can be detected as the farthest point from a line defined by the two non-touching end-
points of the lines or by finding that point in the neighborhood of the initial corner point, which
gives the minimum sum of error variances of both lines [36]. The existence of a corner can be
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determined from the curvature function [16], but its characterization (estimation of the mean pose
and uncertainty measurement) is conducted using the two lines that generates the corner [14].
Figure 5 (d) illustrates the virtual corner detected by the algorithm (triangle) for the real scene
described in Figure 5 (a). The associated covariance matrix has been also represented (ellipse).

Figure 6. A real corner is not usually located at one of the laser range readings (they are
marked as blue dots over the detected line segments).

4. Edges

The adaptive breakpoint detector searches for large discontinuity values in the laser scan data.
Range readings that define this discontinuity are marked as breakpoints. Edges are defined as
breakpoints associated to end-points of plane surfaces [37]. To satisfy this condition, the portion of
the environment where the breakpoint is located must be a line segment and must not be occluded
by any other obstacle. This last condition is true if the breakpoint is closer to the robot than the
other breakpoint defined by the same large discontinuity (see Figure 7). It must be also noted
that, when the laser range finder does not work with a scanning angle of 360o, the first and last
breakpoints will not be considered as edges, because it is impossible to know if they define the
end-point of a surface.

Figure 7. An edge is defined as a breakpoint associated to the end-point of a plane surface
which is not occluded by any other obstacle.
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Edges are characterized by the Cartesian position (x, y) of the breakpoint and by the orientation of
the plane surface described by the line segment, θ ([14]).

4. Affine-invariant Laser Scan Segmentation

The CUBA algorithm is a curvature based approach to extract dominant points from the laser scan
data. After the segmentation process a set of corners, line and curve segments are obtained and charac-
terized to be used as natural landmarks. Although the adaptive curvature estimation provides a robust
criterion to the laser scan segmentation, some aspects can be considered to improve this algorithm to be
more robust against noise and affine transformations. This section describes the new technique proposed
in this paper for segmenting the scan data acquired by a laser range sensor.

4.1. Adaptive Estimation of the Region-of-support

From the pioneering paper of Teh and Chin [38], many researchers have argued that the estimation
of the curvature relies primarily on the precise calculation of the region-of-support associated to each
curve point. In the described framework, in order to specify the region-of-support associated to the range
reading i of the laser scan, the algorithm must determine the maximum length of scan that presents no
significant discontinuities on the right and left sides of the range reading i, tf [i] and tb[i], respectively. To
estimate the tf [i] value, the algorithm first computes two sets of triangles, {taj}i+tf [i]−1

j=i and {tcj}i+tf [i]−1
j=i .

The area of the triangle taj is defined as

|taj | =
1

2

∣∣∣∣∣∣∣

xj xc xj+1

yj yc yj+1

1 1 1

∣∣∣∣∣∣∣
(10)

where (xj, yj) and (xj+1, yj+1) are the Cartesian coordinates of the arc range readings j and j + 1 and
(xc, yc) is the robot position, xc.

The area of the triangle tcj is defined as

|tcj| =
1

2

∣∣∣∣∣∣∣

xp
j xc xp

j+1

yp
j yc yp

j+1

1 1 1

∣∣∣∣∣∣∣
(11)

where (xp
j , y

p
j ) is the projection of (xj, yj) on the chord that joins the range readings i and i + tf [i].

If T a
i,tf [i] and T c

i,tf [i] are equal to
∑i+tf [i]−1

j=i |taj | and
∑i+tf [i]−1

j=i |tcj|, respectively, then tf [i] will be
defined by the largest value that satisfies

(T a
i,tf [i] − (T a

i,tf [i] ∩ T c
i,tf [i])) < Ut (12)

Figure 8 shows the process to extract one tf [i] value. tb[i] is also set according to the described scheme,
but using i− tb[i] instead of i + tf [i].

The correct selection of the Ut value is very important. Thus, if the value of Ut is large, tf [i] and
tb[i] tend to be large and the contour details may be missed; if it is small, tf [i] and tb[i] are always very
small and the resulting function is noisy. In order to set it correctly, a set of real plane surfaces have been
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scanned at different distances from the sensor. In these surfaces, this value must be fixed to not to detect
any local peak. This simple experiment has provided us an Ut value equal to 25.0 cm2, which has been
successfully employed in all experiments.

Figure 8. Calculation of the maximum length of contour presenting no significant disconti-
nuity on the right side of range reading i (tf [i]): (a) Part of the laser scan and point i; (b) scan
data acquired by the laser range sensor; and (c) evolution of the area delimited by the arc and
the chord (

∑i+tf [i]−1
j=i |taj | − (

∑i+tf [i]−1
j=i |taj | ∩

∑i+tf [i]−1
j=i |tcj|)). It can be noted that this area

suffers a sharp increasing when tf [i] ≥ 8. This change allows to estimate the correct tf [i]

value and it will be detected in our approach using the Equation 12 (in this case, tf [i] = 8).

(a) (b)

(c)

4.2. Affine-invariant Laser Scan Segment Descriptor

Many researchers have used the area of the triangle, formed by the curve points, as the basis for shape
representations [39]. The proposed laser scan segmentation algorithm employs a curvature estimator to
characterize the shape contour, which is based on this triangle-area representation (TAR). Given a laser
scan segment and, once this proposal has determined the local region-of-support associated to every
range reading, the process to extract the associated TAR consists of the following steps:

1. Calculation of the local vectors ~fi and ~bi associated to each range reading i. These vectors present
the variation in the X and Y axis between range readings i and i+tf [i], and between i and i−tb[i].
If (xi, yi) are the Cartesian coordinates of the range reading i, the local vectors associated to i are
defined as

~fi = (xi+tf [i] − xi, yi+tf [i] − yi) = (fxi
, fyi

)
~bi = (xi−tb[i] − xi, yi−tb[i] − yi) = (bxi

, byi
)

(13)
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2. Calculation of the TAR associated to each range reading. The signed area of the triangle at contour
point i is given by [39]:

κi =
1

2

∣∣∣∣∣∣∣

bxi
byi

1

0 0 1

fxi
fyi

1

∣∣∣∣∣∣∣
(14)

3. TAR Normalization. The TAR of the whole laser scan segment, {κi}N
i=1, is normalized by dividing

it by its absolute maximum value.

When the contour is traversed counterclockwise, positive, negative and zero values of TAR mean
convex, concave and straight-line points, respectively.

Figure 9 shows two laser scan segments taken from different points of view. Figures 9b and 9d
present the two adaptive TAR associated to Figures 9a and 9c, respectively. Although the number of
range readings in the acquired segments are significantly different, both representations detect the same
sets of dominant points.

Figure 9. (a) Laser scan #1. (b) Adaptive TAR associated to scan segment A in (a). (c) Laser
scan #2. (d) Adaptive TAR associated to scan segment A in (c).

(a) (b)

(c) (d)

The advantage of measuring the curvature in an adaptive way can be appreciated in Figure 10. Fig-
ure 10a shows the dominant points detected from the adaptive TAR associated to the laser scan segment
(triangle side lengths ranging from 3 to 15). The scheme to detect line and curve segments described
in [16] has been used. It can be noted that all dominant points are correctly detected. On the contrary,
Figure 10a,b shows the dominant points obtained by the same process when two constant triangle side
length values are used. It can be appreciated that when a low value is used (t = 3), the TAR is too
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noisy and false dominant point detection occurs. On the contrary, if a high value is used (t = 15), the
representation is excessively filtered, and some dominant points are lost.

Figure 10. (a) Dominant points detected from the TAR obtained using an adaptive triangle
side length; and (b) dominant points detected from the TAR obtained using a t value equal
to 3 (left image) or t value equal to 15 (right image).

(a) (b)

4.3. Laser Scan Descriptor Under General Affine Transformations

Let {xi, yi}N
i=1 be the Cartesian coordinates of the set of range readings associated to a laser scan

segment. If this scan segment is subjected to an affine transformation, the relation between the original
and the distorted representations is given by

[
x̂i

ŷi

]
=

[
a b

c d

] [
xi

yi

]
+

[
t1

t2

]
(15)

where {x̂i, ŷi}N
i=1 is the affine distorted representation of the scan segment, a, b, c and d represent scale,

rotation and shear and t1 and t2 represent translation. By substituting the expressions for {x̂i, ŷi}N
i=1 into

Equation 13, we obtain

fx̂i
= a(xi+tf [i] − xi) + b(yi+tf [i] − yi) = a · fxi

+ b · fyi

fŷi
= c(xi+tf [i] − xi) + d(yi+tf [i] − yi) = c · fxi

+ d · fyi

bx̂i
= a(xi−tb[i] − xi) + b(yi−tb[i] − yi) = a · bxi

+ b · byi

bŷi
= c(xi−tb[i] − xi) + d(yi−tb[i] − yi) = c · bxi

+ d · byi

(16)

Then, if we substitute 16 into 14, it is obtained that κ̂i = (ad− bc)κi, where κ̂i is the affine transformed
version of κi. As the TAR is normalized by its maximum value, this representation is invariant to the
affine transformations.

4.4. Experimental Results

To evaluate the performance of the proposed algorithm, two laser scan datasets taken from two dif-
ferent environments have been selected: the fourth level of the University Institute of Research at the
Technology Park of Andalusia in Málaga, Spain, and a part of the Intel Jones Farms Campus, Oregon.
The first dataset has been collected using Rex, a Pioneer 2AT robot from ActivMedia equipped with a
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SICK LMS200. The field of view is 180o in front of the robot and up to 8 m distance. The range samples
are spaced every half a degree, all within the same plane. Figure 11a shows the first test area. This test
area is an office-like environment which presents a higher density of detected landmarks. In the second
test area, the scan data are taken in the Intel Jones Farms Campus in Oregon. The ground map is shown
in Figure 11b. The environment is also an office-like structure. This second dataset has been obtained
from the Radish repository [40] and the robot platform for this dataset was a Pioneer2DX (odometry)
with a SICK LMS200. It must be noted that the set of threshold values used by the algorithm are the
same for both scenarios.

Figure 11. (a) The first test area, an office-like environment sited at the Technology Park of
Andalusia (Málaga); and (b) the map of a part of the Intel Jones Farms Campus in Hillsboro,
Oregon (source: the Radish repository http://radish.sourceforge.net/).

(a) (b)

Figure 12 shows the detected segments at two different robot poses at the first scenario. Figures 12a
and 12c present two scan data collected in these poses. The laser scan range readings has been marked
as dots. The squares represent the start and end-points of each laser scan segment. Figures 12b and 12d
show the curvature functions associated with the laser scans in Figures 12a and 12c, respectively. The
segmented portions of the curvature functions are bounded by breakpoints or rupture points. Figure 13
shows the segmentation of several laser scans acquired by the robot in the second test area. It can be
noted that all segments are correctly obtained.

Finally, in this work, due to the usual velocities in mobile robotics, the assumption of low speeds (i.e.,
few meters per second) has been taken. Therefore, the effect of the robot motion on individual range
readings is negligible. Besides, the measured distance ri is perturbed by a systematic error and a statis-
tical error, usually assumed to follow a Gaussian distribution with zero mean. In order to compensate
the systematic error, it has been approximated by a sixth-order polynomial which fits the differences
between the measured distance and the true obstacle distance in the least-squares sense (see [14] for
further details).
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Figure 12. (a) Laser scan #3. (b) Curvature functions associated to (a). (c) Laser scan #4. (d)
Curvature functions associated to (c).

(a) (b)

(c) (d)

Figure 13. (a)–(f) Laser scan segmentations.

(a) (b) (c)

(d) (e) (f)
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5. Comparative Study

In order to compare the proposed method to other approaches, we have implemented several laser scan
data segmentation algorithms. Particularly, for the purpose of comparison, the split-and-merge (SM)
algorithm [20], the iterative-end-point-fit (IEPF) method [18], the split-and-merge fuzzy (SMF) [19],
the curvature scale space (CSS) [32], a Hough-based algorithm [23] and an adaptive curvature approach
(CUBA) [16] has been selected. The test database consists of 50 laser scans obtained from a set of 10
artificial maps that have been created using the Mapper3 software from Activmedia Robotics. Laser
scans have been obtained from these maps using MobileSim. The aim of using these artificial maps is to
test each algorithm in a controlled and supervised environment, where the number and shape of segments
are known (ground truth). Simulated laser sensor exhibits statistical errors of σr = 5 mm and σϕ = 0.1
degrees. Each test scan consists of 360 range readings and it represents several line and curve segments.

Algorithms are programmed in C, and the benchmarks are performed on a PC with a Pentium II 450
MHz. The minimum number of points per line or curve segment have been fixed to 10 and the minimum
physical length of a segment have been fixed to 50 cm. Both parameters have been chosen according to
the simulated scans. Other parameters are algorithm-specific.

Segmentation experiments were repeated several times to choose good values for each approach. Seg-
ment pairs are initially matched using a χ2-test with a matching valid gate value of 2.77 (75% confidence
interval). Then, extracted segments are matched to true segments using a nearest-neighbor algorithm.
Experimental results are shown in Table 1. The correctness in these methods can be measured as [13]

TruePos =
NumberMatches

NumberTrueSeg
(17)

FalsePos =
NumberSegExAl −NumberMatches

NumberSegExAl
(18)

where NumberSegExAl is the number of segments extracted by an algorithm, NumberMatches is the
number of matches to true segments and NumberTrueSeg is the number of true segments. To determine
the precision, line and curve segments are taken into account. Line segments are characterized by α, the
angle between the X axis and the normal of the line, and d, the perpendicular distance of the line to the
origin. Then, the following two sets of errors on line parameters are defined:

∆d : ∆di = |di − dt
i|, i = 1...n

∆α : ∆αi = |αi − αt
i|, i = 1...n

(19)

where n is the number of matched pairs, dt
i and αt

i are line parameters of a true line, and di and αi are
line parameters of the corresponding matched line. It is assumed that error distributions are Gaussian.
Then, the variance of each distribution is computed as

σ2
∆d =

1

n− 1

∑
(∆di − 1

n

∑
∆di)

2 (20)

Similar sets of errors on curve parameters are defined (xc and yc define the center of the circle and ρ is
the radius). From Table 1, it can be noted that the IEPF and SM algorithms perform faster than the others.
The proposed method is faster than the CUBA, CSS and HT approaches. Besides, the CSS, CUBA and
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the proposed algorithm are the only methods that do not split curve segments into short straight-line
segments. Therefore, they have the best scores in term of correctness and precision with respect to curve
segments.

Finally, a typical situation to illustrate the improvement in the proposed algorithm is shown in Fig-
ure 14. In this case it is compared to the CUBA algorithm (Figures 14c and 14d) in the same indoor
environment but from different robot poses. The inset of Figure 14d shows a part of the scan in detail,
where the algorithm split the curve segment in two parts. This is not the result obtained from the previous
pose (Figure 14c), in this case the same part of the scan has been considered as only one curve segment.
It can be noted how the proposed algorithm provides the same results from different poses (Figures 14a
and 14b) due to its invariant properties. These situations arise when some parts of the environment are
occluded or are out of the vision field of the laser scanner during some time, and are observed again from
a different robot pose (translation and/or rotation).

Figure 14. (a)–(b) Results of the proposed algorithm from different poses in the same indoor
environment. The same results are provided by the algorithm from these robot poses (see
details in the figure (b); (c)–(d) CUBA algorithm results from the same tests. The algorithm
split the curve segment in different parts due to this algorithm is not invariant to robot pose.

(a) (b)

(c) (d)
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Table 1. Experimental results of several segmentation algorithms (see text).

Algorithm SM SMF IEPF CSS HT CUBA Proposed
Execution time (ms) 7.1 14.6 4.2 39.1 33.4 13.6 10.1

TruePos 0.77 0.79 0.78 0.93 0.73 0.92 0.93
FalsePos 0.23 0.23 0.26 0.03 0.28 0.02 0.02

σ∆d [mm] 15.2 12.3 17.2 10.4 9.8 10.2 10.2
σ∆α [deg] 0.82 0.63 0.79 0.58 0.58 0.60 0.59

σ∆xc [mm] 14.1 13.1 13.9 10.1 13.0 9.8 9.7
σ∆yc [mm] 12.6 12.9 13.1 9.8 12.7 9.9 9.6
σ∆ρ [mm] 8.3 7.9 8.5 7.9 8.5 6.5 6.1

6. Conclusions and Future Works

This paper presents a curvature-based environment description for robot navigation using laser range
sensors. The main advantage of using curvature information is that the algorithm can directly provide line
and curve segments, and improve the robustness against noise. Besides, this approach exhibits superior
performance over traditional segmentation algorithms based on polygonal approximations which assume
that the laser scan is only composed of line segments. The proposed segmentation module uses an
adaptive estimate of the curvature according to a triangle-area representation, where the triangle side
length at each range reading are adapted to the local changes of the scan data. The segmentation results
are used to provide natural landmarks of the robot environment: line and curve segments, corners and
edges. Finally, the segmentation algorithm has been compared with the state-of-the-art algorithms in
terms of performance, robustness and speed. Although the proposed algorithm provides slightly better
results than previously proposed curvature-based approaches (the best results has been obtained for curve
segments, see Table 1), it is faster, invariant to translation and rotation, and robust against noise. Future
work will focus on the development of an algorithm for scan matching of two consecutive scan data
acquired by the sensor based on the extracted features and application in dynamic environments (e.g.,
people or object moving around the robot). This algorithm must be capable to estimate the robot pose by
trying to maximize the overlapping between two sets of features extracted by the environment description
proposed in this work.

7. Glossary

1. Odometry: is the use of data from the movement of proprioceptive sensor (actuators) to estimate
change in the robot pose over time. Odometry is used by the current robots to estimate (not
determine) their pose relative to an initial location.

2. Localization: is defined as the knowledge of the position and orientation of the robot in the working
environment at every instant of time. In a local point of view, given a map of the environment and
an initial pose (x - y position, and θ orientation), the localization task consists of tracking the



Sensors 2009, 9 5915

mobile agent around the environment.

3. Mapping: is defined as the problem of acquiring a spatial model of a robot environment. Usually,
mapping algorithms obtain an instantaneous local representation of the scene according to the
current sensor reading, including static and dynamic objects. Next, a global map is built only with
static objects.

4. SLAM: is a technique used by autonomous mobile robots to build up a map within an unknown
environment while keeping track of their current position at the same time.

5. Natural landmarks: Landmarks are defined as features which are determined by the system and
detected according to some criteria. In this situation, natural landmarks are directly selected in the
natural scene considering their geometrical or photo-metrical features.

6. Segmentation: is a process of aiming to classify each scan data into several groups, each of which
possibly associates with different structures of the environment.

7. Breakpoints: are scan discontinuities due to a change of the surface being scanned by the laser
sensor.
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