
PROCEEDINGS OF THE WAF2016, JUNE 2016 1

Percepts symbols or Action symbols? Generalizing
how all modules interact within a software

architecture for cognitive robotics
R. Marfil, L.J. Manso, J.P. Bandera, A. Romero-Garcés, A. Bandera, P. Bustos, L.V. Calderita, J.C. González, A.

Garcı́a-Olaya, R. Fuentetaja and F. Fernández

Abstract—Robots require a close coupling of perception and
action. Cognitive robots go beyond this to require a further
coupling with cognition. From the perspective of robotics, this
coupling generally emphasizes a tightly integrated perceptuomo-
tor system, which is then loosely connected to some limited form
of cognitive system such as a planner. At the other end, from the
perspective of automated planning, the emphasis is on a highly
functional system that, taken to its extreme, calls perceptual and
motor modules as independent functions. This paper proposes to
join both perspectives through a unique representation where the
responses of all modules on the software architecture (percepts
or actions) are grounded using the same set of symbols. This
allows to generalize the signal-to-symbol divide that separates
classic perceptuomotor and automated planning systems, being
the result a software architecture where all software modules
interact using the same tokens.

Index Terms—cognitive robotics, inner representations, symbol
grounding

I. INTRODUCTION

ABSTRACT reasoning about phenomena from the outer
world is intimately tied with the existence of an internal

representation of this external reality. From a robotic per-
spective, this implies the establishment and maintenance of
a connection between what the robot reasons about and what
it can sense [5]. The Physical Symbol Grounding is defined
as the problem of how to ground symbol tokens to real world
entities, i.e. to percepts that can have a high dimensionality
and, unfortunately, that can vary under different conditions.
Furthermore, the dynamic essence of the outer reality can
impose that these percepts continuously change over time. Of
course, this is a challenging problem, approached from very
different points of view by many researchers in recent decades
(e.g. see some examples on the brief survey by Coradeshi
et al. [5]). Among these proposals, recent contributions [2]
are pointing towards the use of a shared, unique internal
representation. This representation is fed with the symbol
tokens generated by all the software components in charge
of solving the grounding problem.

R. Marfil, J.P. Bandera, A. Romero-Garcés and A. Bandera are with Uni-
versity of Málaga. E-mail: {rebeca, jpbandera, argarces, ajbandera}@uma.es

L.J. Manso, P. Bustos, and L.V. Calderita are with University of Ex-
tremadura. E-mail: {lmanso, pbustos, lvcalderita}@unex.es

J.C. González, A. Garcı́a-Olaya, R. Fuentetaja and F. Fernández are
with University Carlos III of Madrid. E-mail: {josgonza, agolaya, rfuentet,
ffernand}@inf.uc3m.es

Figure 1(left) shows a schematic view of RoboCog [4], [3],
[11], a software architecture where this premise of maintaining
a shared representation is hold. The figure depicts how two dif-
ferent agents interact through this representation for unfolding
a ’go to person’ behavior provided by the deliberative agent (in
this specific case, the PELEA module [1]). Domain-dependent
agents, in charge of performing the necessary physical and
perceptual actions, use this plan and the shared world model
to perform their activities. In this case, the Person agent
detects the pose of the person and provides these data to the
representation, and the Navigation agent takes these data and
moves the robot. The shared representation is cooperatively
built and kept updated by all the modules.

The use of the state of the world as the best mechanism to
communicate software components was pointed out by Flynn
and Brooks [6], as a way for reducing the large and close
dependence of the components within the subsumption archi-
tecture. Paradoxically, this was considered more a problem
than an advantage by Hartley [8], as similar states of the
world could mean different things depending on the context.
Thus, this would result in a behavior being activated when
another behavior accidentally allowed the world to satisfy
its preconditions. Substituting the real world by this inner
representation, the problem can be minimized as symbolic
information can disambiguate these situations. In fact, in
Figure 1(left) the task to accomplish by all agents is clear
as it is commanded by the deliberative agent.

As Fig. 1(left) depicts, the execution of the high-level action
emanated from PELEA is controlled by the Executive module,
a component that also provides the interface to the representa-
tion. The Executive partially assumes the functionality of the
Sequencer module of classical three-layer architectures [7]. It
interfaces PELEA, from which it receives the plan to execute
and to which it reports changes on the representation, through
asynchronous events. The Executive module publishes the
representation to all agents (blank arrows in Figure 1(left))
and it is also the only module in charge of checking if the
changes on the representation, coming from the agents, are
valid or not. More details can be read in [10], but here this
property is reflected by connecting the Executive core with
a Grammar data set. Significantly, this scheme implies that
the agents will execute the required subtask as they receive
a direct order from the Executive. Hence, the internalized
state of the world does not guide its behavior and it will
be only used, as described before for the simple ’go to



2 PROCEEDINGS OF THE WAF2016, JUNE 2016

Fig. 1. (left) A brief scheme of the RoboCog architecture, showing its three main components: PELEA (a high level module for planning, monitoring, and
learning), an Executive in charge of redirecting the plans from the planning module to the corresponding low-level modules and managing the representation
of the world, and a set of domain-dependent agents (in this case represented by Navigation and Person). Modules with red background (Battery level, Laser...)
provide inputs to the agents, meanwhile those with green background (Platform motion) receive the results from the agents. Both sets constitute the Hardware
Abstraction Layer (HAL) of the system; and (right) the scheme of the new proposal for dealing with this same task. There is not an Executive module and
PELEA needs to change the representation to achieve the correct response from the Person and Navigation agents.

person’ example, to intercommunicate the agents. This paper
proposes to change this scheme by removing the Executive
module and forcing the agents to encode the action using the
same set of symbols. Figure 1(right) schematizes how PELEA
should ask the agents to perform the ’go to person’ behavior.
Briefly, as it occurs with perceptions, actions will also be
thought of as changes to the world. It is in this new proposal
where the shared representation truly becomes the core of the
architecture, storing all data that is required for the agents
to perform their activities. This simplifies the architecture as
a whole, as no further modules are required to understand
the state of the robot and its context. Furthermore, fewer
connections eases intercommunication and generalization. As
a major disadvantage, this scheme implies that the modules
use a more complex logic to infer their activities from the
state, without specific action commands. However, they are
also more easily modified, added or removed without affecting
the rest of the architecture. This approach also eases the
deployment of different behavioral schemes such as stigmergic
collaboration or competitive approaches (e.g. using more than
one planner).

The rest of the paper is organized as follows: Section II
briefly presents the unified framework for representing ge-
ometric and symbolic information. The proposal has been
currently endowing within CLARC1, a robot in charge of
performing different tests to geriatric patients. Sections III
and IV show the unfolding of the proposal for performing the
Barthel test and the preliminary results from this work. An
open discussion about the pros or cons of this new scheme is
sketched at Section V.

1http://echord.eu/essential grid/clark/

II. THE DEEP STATE REPRESENTATION

The Deep State Representation (DSR) is a multi-labeled
directed graph which holds symbolic and geometric informa-
tion within the same structure. Symbolic tokens are stated as
logic attributes related by predicates that, within the graph, are
stored in nodes and edges respectively. Geometric information
is stored as predefined object types linked by 4× 4 homoge-
neous matrices. Again, they are respectively stored as nodes
and edges of the graph. Figure 2 shows one simple example.
The person and robot nodes are geometrical entities, both
linked to the room (a specific anchor providing the origin of
coordinates) by a rigid transformation. But, at the same time
that we can compute the geometrical relationship between both
nodes (RT−1×RT ′), the person can be located (is with) close
to the robot. Furthermore, an agent can annotate that currently
the robot is not speaking.

A. Data structure

As a hybrid representation that stores information at both
geometric and symbolic levels, the nodes of the DSR store
concepts that can be symbolic, geometric or a mix of them.
Metric concepts describe numeric quantities of objects in the
world that can be structures like a three-dimensional mesh,
scalars like the mass of a link, or lists like revision dates.
Edges represent relationships among symbols. Two symbols
may have several kinds of relationships but only one of them
can be geometric. The geometric relationship is expressed with
a fixed label called RT . This label stores the transformation
matrix (expressed as a Rotation-Translation) between them.

Then, the DSR can be described as the union of two quivers:
the one associated to the symbolic part of the representation,
Γs = (V,Es, ss, rs), and the one related to the geometric part,
Γg = (Vg, Eg, sg, rg). A quiver is a quadruple, consisting of a
set V of nodes, a set E of edges, and two maps s, r : E → V .



R. MARFIL ET AL.: GENERALIZING THE GROUNDING OF PERCEPTS AND ACTIONS 3

These maps associate with each edge e ∈ E its starting node
u = s(e) and ending node v = r(e). Sometimes we denote
by e = uv : u → v an edge with u = s(e) and v = r(e).
Within the DSR, both quivers will be finite, as both sets of
nodes and edges are finite sets. A path of length m is a finite
sequence {e1, ...em} of edges such that r(ek) = s(ek+1) for
k = 1...m − 1. A path of length m ≥ 1 is called a cycle if
s(e1) and r(em) coincide.

According to its nature, the properties of the symbolic
quiver Γs are:

1) The set of symbolic nodes V contains the geometric set
Vg (i.e. Vg ∈ V )

2) Within Γs there are no cycles of length one. That is,
there are no loops

3) Given a symbolic edge e = uv ∈ Es, we cannot infer
the inverse e−1 = vu

4) The symbolic edge e = uv can store multiple values
On the other hand, according to its geometric nature and the
properties of the transformation matrix RT , the characteristics
of the geometric quiver Γg are:

1) Within Γg there are no cycles (acyclic quiver)
2) For each pair of geometric nodes u and v, the geometric

edge e = uv ∈ Eg is unique
3) Any two nodes u,v ∈ Vg can be connected by a unique

simple path
4) For each geometric edge e = uv = RT , we can define

the inverse of e as e−1 = vu = RT−1

Thus, the quiver Γg defines a directed rooted tree or rooted tree
quiver [9]. The kinematic chain C(u,v) is defined as the path
between the nodes u and v. The equivalent transformation
RT of C(u,v) can be computed by multiplying all RT
transformations associated to the edges on the paths from
nodes u and v to their closest common ancestor w. Note
that the values from u to the common ancestor w will be
obtained multiplying the inverse transformations. One example
of computing a kinematic chain is shown in Figure 2.

B. Internalizing the outer world within the DSR

The complexity of the domain-dependent modules typically
implies that they will be internally organized as networks of
software components (compoNets). Within each compoNet,
the connection with the DSR is achieved through a specific
component, the so-called agent. These agents are present in the
two schemes drawn at Figure 1, but its degree of complexity
has dramatically changed when we move from one scheme
to the other. Within RoboCog (Figure 1(left)), the internal
execution of an agent can be summarized by the Algorithm 1.
With the removing of the Executive, the agents need to search
for those changes on the DSR that launch the specific problem-
solving skills of the compoNets they represent (e.g. detect the
pose of a person). The new agents should then modify its
internal data flow, as it is briefly outlined at Algorithm 2.

The search for changes skill depends on each agent and
the behaviors that the compoNet can solve. Within the al-
gorithm, it is stated that this function returns the action
to perform. This is the most significant difference between
Algorithms 1 and 2: in the first case the action is imposed by

location

person robot

speaking

RT ′
RT

RT−1 ×RT ′

is with

is not

Fig. 2. Unified representation as a multi-labeled directed graph. Edges labeled
as is with and is not denote logic predicates between nodes and they belong to
Γs. Edges starting at room and ending at person and robot are geometric and
they encodes a rigid transformation (RT ′ and RT respectively) between them.
Geometric transformations can be chained or inverted to compute changes in
coordinate systems.

Input: action from the Executive core
while (1) do

subscribe to DSR updates;
process { action };
if DSR changes then

publish new DSR;
end

end
Algorithm 1: Procedure of an agent within RoboCog

an external module, but in the second one, the action is deter-
mined by the agent. As we will briefly discuss at Section V this
opens new ways for dealing with the top-down and bottom-up
mechanisms for determining what the next action to perform
will be or for implementing reflexive behaviors. The whole
execution of the compoNet is conditioned by its inherent
Grammar, i.e. the database storing triplets with the states of the
DSR after, during and before the compoNet executes a specific
action. Figure 3 shows one example, stored at the Grammar
of the Speech agent (see Section III). Figure 3(left) shows the
state of the DSR before PELEA states that the robot should say
the sentence yyy. When PELEA changes the DSR (changing
the attribute xxx to yyy, between test and test part), and
the agent Speech receives the new state, Speech uploads the
DSR to inform all agents that the robot is speaking. When
the sentence ends, Speech changes the DSR to robot finish
speaking. Contrary to the way we work within RoboCog,
where the Grammars were only defined by a initial state of
the DSR (before an agent executes the action) and an ending
state (after an agent executes the action), the agents must now
to inform that they are executing the action. This constitutes
the current way to avoid that other agent on the architecture



4 PROCEEDINGS OF THE WAF2016, JUNE 2016

Fig. 3. (Left) The state of the DSR before PELEA states that the robot should say a sentence yyy; (center) PELEA changes the text to speech (from xxx to
yyy) and then, when the Speech agent reads the DSR, the robot starts to speech (robot is speaking); and (right) the sentence has been said and the Speech
agent informs to the rest of the agents through the DSR (robot finish speaking).

while (1) do
subscribe to DSR updates;
search for changes { output: action };
process { action };
if DSR changes then

update DSR;
end

end
Algorithm 2: Procedure of an agent within the new proposal

modifies that part of the DSR meanwhile an action is being
executed.

III. BUILDING A WHOLE ARCHITECTURE AROUND THE
DSR

A. Our use case: the Barthel test

CLARC is waiting on Room 1 for its first patient.
When Dr. Cesar presses the Start button on his mo-
bile phone, CLARC wakes up and looks for Carlos,
his patient, who should be sitting in front of it.
When CLARC sees him, he greets him and presents
itself as the responsible for conducting a small test,
which will help the doctor to know how he is. It also
briefly describes him what the test will be: basically
a collection of questions that must be answered
by selecting one of the 3-4 options described. And
then the test starts. Sometimes, CLARC hear words
that it does not understand. Sometimes, it just hears

nothing. However, these situations are expected...
and planned!. It is patient and can repeat the phrase
several times, also suggest to leave it and go to the
next question, and also always offer the option to
answer using the touch screen on its chest. After 10-
15 minutes, the test ends. It is time to say goodbye to
Carlos and to send an internal message to Dr. Cesar
indicating that the result of the test is stored on the
CGAmed server for being validated.

This brief summary describes how the CLARC robot should
address the Barthel Test. For performing the required actions,
it is endowed with a software architecture that is showed at
Figure 4. Out of the figure is the CGAmed server, where
the application that Dr. Cesar used for launching the test
is set. Once the Deliberative module (PELEA) receives this
command, it wakes up the activity of the system, translates
the high level action into a set of low level commands, and
introduces the first of these commands within the DSR as a
structural change on the DSR. Each of these changes provokes
the response of one or several agents, which will try to modify
the DSR towards a new state. Certain commands are single
questions, that the agent of PELEA can ask examining the
DSR. For instance, the command SearchPatient is answered
as Yes, if the robot is seeing the patient seated in front of it,
or as No, otherwise.

B. Overview of the architecture

Figure 4 shows an overview of the whole architecture in
charge of performing the Barthel test within the CLARK



R. MARFIL ET AL.: GENERALIZING THE GROUNDING OF PERCEPTS AND ACTIONS 5

Fig. 4. Overview of the architecture within the CLARC robot. There are currently four compoNets: PELEA, Person, Panel and Speech. The Grammars that
drive the behavior of these agents is encoded within the agents.

project. Surrounding the World model provided by the DSR
there are four agents: PELEA, Speech, Panel and Person. The
first one is in charge of providing the deliberative skills to the
architecture, but it interacts with the rest of agents using the
same procedure (i.e. changing the DSR). The Speech agent is
the responsible of understanding the answers of the patient or
guardian and of translating the text into speech, generating the
voice of CLARC. This agent manages a specific grammar for
dealing with the answers. The Panel agent manages the touch
screen, which provides a non-verbal channel for interacting
with the patient that complements the verbal one. Finally,
the Person agent is the responsible of detecting and tracking
the face of the interviewed person. It should be noted that,
for this stage of the project, it is not needed that the robot
moves. A fifth module is the WinKinectComp. It runs on a
second PC and is in charge of capturing the preprocessed data
provided by a rgbd Kinect sensor (i.e. joints of the person) and
a shotgun microphone (automatic speech recognition). This
data is provided to the Person and Speech compoNets.

PELEA is the most complex agent within the architecture.
Within this project, it includes the following components

• The High Level Executive (HLE) module manages the
whole compoNet. It receives the global goals and invokes
the Monitoring module to get a plan achieving them.
Then it takes the first action of the plan and invokes
the HighToLow module to decompose it into low-level
actions. These actions are then inserted into the DSR as
changes on the model. The HLE looks at the changes in
the DSR and, after a conversion to high level knowledge
performed by LowToHigh, sends them to Monitoring that
checks whether the plan is executing conveniently.

• The Monitoring module is in charge of maintaining a
high level model of the environment and of invoking
the Decision Support module when any deviation in the
execution of the plan arises. It detects for example that
the user has not answered a question or is not facing the
robot and tries to find alternate plans to solve the problem
found.

• The Decision Support module creates a plan starting from
the current state, the goals to be achieved, the possible
states of the world and the description of the changes the
actions produce in the world state. To create the plan it



6 PROCEEDINGS OF THE WAF2016, JUNE 2016

invokes an automated planner that returns the sequence
of actions achieving the goals.

• The HighToLow module converts the high level actions of
the plan created by the Decision support module into low
level actions that can be included into the Inner Model.

• The LowToHigh module converts the information con-
tained in the Inner Model, which represents knowledge in
the form of binary predicates into n-ary predicates that the
Monitoring module uses to reason about the correctness
of the execution of the plan.

C. Encoding the grammar rules within the agents
With the removal of the central Executive module, we can

consider that its role is now encoded within the agents on the
architecture (see Figure 4). Thus, as Figure 1(right) shows,
each compoNet has now its own Grammar. This Grammar is
local to the compoNet and is currently encoded within the
code of the agent. In an architecture that is mainly driven
by how the internalized world changes, the coherence on the
encoding of each change and its global synchronization are
basic aspects. Although we have briefly described how the
world is internalized at the DSR at Section II-B, we will
provide here a more detailed description of how a Grammar
is encoded within an agent.

Algorithm 3 illustrates how the specific grammar of the
Speech compoNet is encoded in the agent. The Speech com-
poNet is in charge of translating the chosen sentence from
text to speech and of receiving the responses from the patient
(via the Automatic Speech Recognition (ASR) set on the
WinKinectComp). There are three main modules within the
Algorithm 3. The finishSpeaking is launched by the TTS
module to the Speech agent to inform this that a sentence has
been said. In the DSR, this implies that the robot is speaking
must change to robot finish speaking. On the other hand, the
setAnswer is launched by the Answer module to the agent to
inform that a response has been captured. The DSR is changed
from person waiting answer to person got answer. It also
provides the specific answer. Thus, these functions encode
the final state of the two rules driven the responsibilities of
the Speech compoNet (e.g. Figure 3(right) shows the result
of launching finishSpeaking). Within the main loop of the
agent (compute), it is encoded the searching for changes
aforementioned at algorithm 2. In this case, we document
the two situations that launch the waiting of a new response
from the patient (waitingAnswer) and the saying of a new
sentence (startSpeaking). In the first case, the change on the
DSR is done without evaluating any additional constraint. On
the second case, we will evaluate if the label, i.e. the sentence
to say, has been changed (see Figure 3). The procedures to
address (i.e. the process { action } of algorithm 2) are also
launched (canAnswer() and setText(label), respectively). But,
as described at Section II-B, and just before launch one of
these procedures, the agent notifies to the rest of agents that the
process is under execution (publishing the new DSR model).

IV. EXPERIMENTAL RESULTS

The new scheme has been applied for implementing the
Barthel test within the aforementioned CLARK project. The

finishSpeaking
if getEdge(robot,speaking) == is then

removeEdge(robot,speaking, is);
addEdge(robot,speaking, finish);
publishModification();

end
setAnswer
if getEdge(person,answer) == waiting then

removeEdge(person,answer, waiting);
addEdge(person,answer, got [answer]);
publishModification();

end
compute
if worldChanged then

waitingAnswer
if getEdge(person,answer) == can then

removeEdge(person,answer, can);
addEdge(person,answer, waiting);
canAnswer();
model modified = true;

end
startSpeaking
if getEdge(test,test part) == is in then
{q, label} = getEdgeAttribute(test,test part);
if label != label back then

removeEdge(robot,speaking, is not);
addEdge(robot,speaking, is);
setText(label);
model modified = true;

end
end
changeConfig
if ... then...
end
if model modified then

publishModification();
end

end
Algorithm 3: Example of the Grammar encoded within the
Speech agent

Barthel test consists of ten items that measure a person’s
daily functioning; specifically the activities of daily living and
mobility: Bladder and bowel function, transfers and mobility,
grooming and dressing, bathing and toilet use, and feeding
and stairs use. Being actions and perceptions internalized
within the DSR, the monitoring of the evolution of this state
representation allows to track the whole execution of the use
case. Fortunately, we have at our disposal in RoboComp the
graphical tools for addressing this monitoring (see Figure 5).

The Barthel test needs that the robot can speech and show
on a touchscreen specific sentences, for asking or helping.
The robot must also hear or capture from the touchscreen the
answers from the patient or relative. Finally, it is needed to
track the presence of the person. The use case includes a first
introduction, where the test is explained to the user, and then
the robot asks the user for ten items. Each item implies that



R. MARFIL ET AL.: GENERALIZING THE GROUNDING OF PERCEPTS AND ACTIONS 7

Fig. 5. Monitoring the evolution of the DSR.

the user chooses the option that best fits its state from a list.
The presentation of each item follows the same scheme:

1) The robot introduces the item through voice and a
message on the touchscreen

2) The robot describes each possible option (voice and
message)

3) The robot asks the user to give an answer (voice or
tactile on the touchscreen)

4) If after an specific time there is no response
a) The robot describes each possible option via voice
b) The robot shows all options on the touchscreen

If after this second try the patient does not answer, the robot
will go to the next item on the test. Two non-answered items
will provoke that the robot asks the clinician to attend. Figure 6
shows the evolution of the DSR during the Barthel test. It
shows how the state evolves when the person is lost and then
is detected again. It can be noted that the DSR practically
provides a semantically annotated view of the scene. We have
not measured response times but currently all the test can be
run online and without remarkable latencies. The people from
the Hospital Universitario Virgen del Rocı́o has checked the
test and it is now ready for be evaluated by real users.

V. OPEN DISCUSSION

It is really hard to draw a Conclusion Section as this is a
preliminary work. In any case, we are currently able to run a
complete Barthel test, following the correct course of actions
but also acting against exogenous events such as the suddenly
absence of the interviewed person (as Figure 6 shows). This
allows us to open this Section and sketch what the main pros
or cons of this proposal could be.

Pros. On one hand, we have been able to encode using
the same scheme and collection of tokens the commands
originated from a deliberative module and the perceptions,
more or less elaborated by the domain-dependent modules, but
always coming from the sensors. It is interesting to note that
this provides a natural mechanism for merging top-down and
bottom-up procedures for determining the course of action.
In this proposal, the domain-dependent modules can respond
in the same way to both kinds of processes. For instance,
when the robot looses the person, the Speech component can
immediately stop talking and PELEA can change the global

course of action. The local behavior of the Speech module
does not need to wait for receiving a specific command from
PELEA. Thus, these modules can learn how to react to specific
stimulus.

Cons. It is clear that the complexity of those software
components in charge of monitoring the evolution of the
DSR (our agents) is now very more complex. Although the
architecture could provide the impression of being modular,
this is not a reality in its current version: the definition of
the agents demands a high degree of coupling among all
researchers on charge of the implementation of each one of
them. The reason of this dependence can be on the need of
working with the same collection of symbols/tokens, which is
not currently defined in advance. Thus, each change requires
that all agents know how it will be ’written’ on the DSR.
Agents will also manage with care how they advise to the
rest of agents that they are working over a specific part of the
DSR. The current messages on the DSR (such as the robot is
speaking) must be correctly interpreted by other agents that
could be interested on using the speakers. We need again a
very close interaction among the whole team of programmers.

Obviously, future work will focus on dealing with the main
problems detected after these trials. We need to develop a
mechanism that allows the agents to access to specific parts of
the DSR (e.g. the person) and that sets and manages priority
levels for using the resources. The aim should be to mimic
the main guidelines of active vision perception, avoiding that
other agents, with lower priority levels, can change this part
of the DSR meanwhile an action is being executed. It is also
mandatory to change the current way of encoding the agents,
providing a mechanism that can allow a easier encoding.
Finally, the collection of symbols must be generalized, as a
way for achieving the desired modularity of the compoNets.
The current encoding, which allows to read the state of the
outer world by a simple observation of the DSR, can be a
good option for achieving this generalization. However, we
must also be open to the possibility that this encoding can
ease our monitoring of the evolution of the DSR, but could
not be the best option for achieving autonomous learning of
the task-dependent modules. Other encodings (e.g. low-level
features or outcomes generated/employed by these modules)
could be employed at the graph items that are closer to the
sensors. This will increase the data volume represented on the
DSR but also open the architecture for techniques such as
deep learning, which could be applied to generate the current
symbols encoded using natural language. We are currently
working on other tests, such as the Minimental or the GetUp
& Go ones. This last one requires a high coupling of the DSR
with the geometrical reality of the motion of the patient’s joints
during a short sequence of movements. It will be then required
that the annotating of low-level features on the DSR is also
increased.

ACKNOWLEDGMENTS

This paper has been partially supported by the Spanish
Ministerio de Economı́a y Competitividad TIN2015-65686-C5
and FEDER funds and by the FP7 EU project ECHORD++
grant 601116 (CLARK project).



8 PROCEEDINGS OF THE WAF2016, JUNE 2016

Fig. 6. Evolution of the DSR: During the execution of the Barthel test, the robot loses the person for several frames and then asks the patient to sit again
in front of it. More related nodes and edges are colored and in bold, respectively. The figure shows a sequence of views of the DSR: (top-left) before losing
the person, the robot has just finished on asking a question and showing a message on the touchscreen; (top-center) the robot is speaking a new sentence but
then it loses the person. The situation is reported to PELEA; (top-right) but the Speech agent immediately stops speaking; (down-left) the Speech and Panel
returns the DSR to its original state (robot is not speaking and robot is not showing) and PELEA changes the world proposing to speech a specific sentence
(’Please, sit down in front of me’). This sentence is encoded as a label on the is in attribute between test and testPart; (down-center) the Panel also shows
this sentence on the touchscreen; and (down-right) the person isWith robot again and PELEA determines that the test can continue

REFERENCES

[1] V. Alcázar, C. Guzmán, D. Prior, D. Borrajo, L. Castillo and E. Onaindia,
Pelea: Planning, learning and execution architecture, PlanSIG10, 17-24,
2010

[2] S. Blumenthal, H. Bruyninckx, W. Nowak and E. Prassler, A scene graph
based shared 3d world model for robotic applications. IEEE International
Conference on Robotics and Automation, 453-460, 2013

[3] L.V. Calderita, L.J. Manso, P. Bustos. C. Suárez-Mejı́as, F. Fernández,
A. Bandera, THERAPIST: Towards an Autonomous Socially Interactive
Robot for Motor and Neurorehabilitation Therapies for Children, JMIR
Rehabil Assist Technol. 1(1), DOI: 10.2196/rehab.3151, 2014

[4] L.J. Manso, P. Bustos, P. Bachiller and P. Núñez. A Perception-aware
Architecture for Autonomous Robots. International Journal of Advanced
Robotic Systems 12(174), pp.13. DOI: 10.5772/61742. 2015.

[5] S. Coradeschi, A. Loutfi and B. Wrede, A Short Review of Symbol
Grounding in Robotic and Intelligent Systems, Künstliche Intelligenz 27
(2), 129–136, 2013

[6] A.M. Flynn and R.A. Brooks, Battling Reality, MIT AI Memo 1148, 1989
[7] E. Gat, On Three-Layer Architectures, Artificial Intelligence and Mobile

Robots, 195-210, Cambridge: MIT Press, 1998
[8] R. Hartley and F. Pipitone, Experiments with the subsumption archi-

tecture. Proceedings of the International Conference on Robotics and
Automation (ICRA), 1991

[9] V. Katter and N. Mahrt. Reduced representations of rooted trees. Journal
of Algebra 412, 41-49, 2014

[10] L.J. Manso, L.V. Calderita, P. Bustos, J. Garcı́a, M. Martı́nez,
F. Fernández, A. Romero-Garcés and A. Bandera, A genera-purpose
architecture for control mobile robots. Workshop on Physical Agents
(WAF), 105-116, 2014

[11] A. Romero-Garcés, L.V. Calderita, J. Martı́nez-Gómez, J.P. Bandera,
R. Marfil, L.J. Manso, A. Bandera and P. Bustos, Testing a fully
autonomous robotic salesman in real scenarios. IEEE International Con-
ference on Autonomous Robots Systems and Competitions, 2015


