
A new Strategy based on an Adaptive Spatial
Density Function for Social Robot Navigation in

Human-Populated Environments

Araceli Vega1, Luis M. Fernández-Argüéllez1, Douglas G. Macharet2, Pablo
Bustos1 and Pedro Núñez1
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Abstract. With robots shifting towards human-populated environment,
robot navigation is challenging because there are a lot of factors to take
into account, such as social rules or the human intentions. While tra-
ditional robot navigation algorithms treat all sensor readings, including
humans, as objects to be avoided, now it is important to provide robots
with the capability to behave in a socially acceptable manner.
This work presents a new strategy for social robot navigation based on
an adaptive spatial density function to efficiently cluster groups of peo-
ple according to its pattern of arrangement. The proposed function de-
fines regions where navigation is either discouraged or forbidden. The
navigation architecture combines the Probabilistic Road Map and the
Rapidly-exploring Random Tree path planners and an adaptation of the
elastic band algorithm to include the social behaviour. Numerous trials
in real and simulated environments were carried out, which demonstrate
the performance of the clustering algorithm and the social navigation
architecture.
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1 Introduction

In the not too distant future, it is expected that social robots will be helpful
in everyday life. These robots will perform typical tasks in human-populated
environments, such as offices, hospitals, homes or museums. In these environ-
ments where people are constantly present, the robot should behave in both a
human and robot-friendly manner during its movement, exhibiting appropriate
responses.

The term social navigation in robotics has been introduced in the last years
as a way to relate robot navigation in human environments to human-robot
interaction. Developing socially accepted robots has ever been one of the preva-
lent topics of robotics. A social robot should be able to plan different socially
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Fig. 1: Example scenario to explain the method described in this paper. The
robot is operating in a human-populated environment. It has to choose the best
route and navigate without causing discomfort to any human present.

accepted routes during an interaction with humans and also to exhibit proactive
social behaviours during the navigation [1] (e.g., to wittily enter and exit from a
conversation or to gracefully approach people). In this respect, research on social
robot navigation has followed different goals and calls for inquiries (e.g., can the
robot make noise now? Can the robot move behind people? How fast can the
robot move without disturbing people’s sense of safety? Can the robot navigate
in front of someone?). In most of the cases, the answers to these questions act
as constraints on the paths, turning them anthropomorphic paths [3].

In a previous work of the authors [4], a proposal for a social path planner was
described, which included a model of social navigation. This paper focuses on a
path-planning strategy where it is assumed that humans don’t want to interact
with the robot. In this work, a new mathematical model built upon the use of
an adaptive density function in order to efficiently cluster the individuals is de-
scribed. The main contribution is the clustering algorithm, which analyses the
environment and then clusters the individuals into groups according
to social interactions between them. This adaptive spatial density function
models personal space around group of people, which prevents the emotional
discomfort humans may feel when approached closer than they like. The con-
cept of this personal space is related to the term Proxemics, which defines spaces
that humans mutually respects during an interaction. Next, the system adapts
the navigation architecture for including the personal spaces, where navigation
is either discouraged or forbidden. Figure 1 illustrates the problem to solve: the
robot located in the kitchen has to choose the best route and navigate from
its current pose to the living-room (target) along a complex environment with
people. The robot has to choose the best path and navigate without causing
discomfort to any human present.

This paper is organized as follows: in Section 2 a review of similar works in the
literature is described. The adaptive spatial density function for social mapping is
presented in detail in Section 4. Next, the social navigation method is described
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in Section 5, and validated by a group of experiments on real and simulated
environments, the results of which are shown in Section 6. Finally, Section 7
concludes with a discussion of the results and future research directions.

2 Related works

Classically, robots working in human environments have used navigation algo-
rithms where all obstacles are considered in the same way, including people.
Social robots must consider people as a special entity, and not like a common
obstacle. Thus, they must evaluate the person’s level of comfort with respect to
the route of the robot, among other behaviour.

Social navigation has been extensively studied in the last decade and several
methods have been proposed from then (an interesting review is presented in
[5]). Different works, such as [6,7,8], have shown that the same proxemic zones
that exists in human-human interaction can also be applied to human-robot
interaction scenarios. The main idea is to create acceptable behaviours for robots
during their navigation. Therefore, the number of works that have incorporated
this notion of personal space model in the path planning step has increased in
the last years [5].

When a robot plans the best path in human-populated environments, it must
address situations such as not passing between two people talking or avoid get-
ting out of the field of view of the people. A broad survey and discussion regard-
ing the social concepts of proxemics theory applied in the context of human-
aware autonomous navigation is presented in [9]. There are many works in the
literature with different approaches to this problem [10,11,12,13]. The model of
these forbidden areas for robot navigation is not permanent, as several authors
has pointed out, and can vary accordingly to different aspects, such as previously
experience with the robot [14], or functional noise of the robot [15].

In most human-populated scenarios, people is in conversation forming groups.
In this situations, path planners must take into account this new combined entity,
instead of a single personal space. The problem of identifying and correctly
represent groups of people in the environment is a challenge in itself. Most works
dealing with groups of people are build upon the F-formation system [16,17] or
the O-Space [9] formalization, which states that people often group themselves
in some spatial formation with a shared space between them. In this respect,
this paper focuses on an adaptive spatial density function for clustering groups
of people in different formations, which defines the shared space according to
distances and relative angles between humans. Fig. 2 illustrates the most frequent
Kendon’s formations or arrangements: N-shape, Vis-a-vis, V-shape, L-shape, C-
shape and side-by-side. Besides, the O-space defined in [9] is also shown in the
figure. All of them have been taken into account in the function described in this
paper.

The work proposed in this paper defines a mathematical model based upon
the use of an asymmetric Gaussian function [1] to model the personal space of an
individual. Then, the algorithm uses a modified version of the density function
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Fig. 2: Taxonomies of arrangements for a two-person formation defined in [16]
and three-person formation defined in [9]. In the figure, dh is the distance between
humans during conversation. The method proposed in this paper adapts the
social space according to the arrangement.

presented in [18] in order to efficiently analyse the environment and cluster
groups of people according to its pattern of arrangement. Next, this model is
incorporated on the navigation architecture presented in [19], allowing the robot
to navigate in a more social manner among humans.

3 System overview

To plan the best social path in human-populated scenarios, the following strat-
egy is proposed in this paper: i) human detection and representation; ii) cluster-
ing of people into groups according to its social interactions; and iii) including
these personal spaces in the path planners algorithms. Thus, the methodology
described in this paper is divided into two fundamental steps:

– Individuals representation and clustering : based upon the use of a Gaussian-
based representation for personal space, a global density function to separate
individuals into groups accordingly to its pattern of arrangement is defined.

– Socially acceptable navigation: the social navigation architecture uses the
well-known Probabilistic Road Mapping (PRM) [20] and Rapidly-exploring
Random Tree (RRT) [21] planners, in conjunction with a modified version
of the elastic band algorithm for path optimization [19]..

An overview of the proposed approach is described in the Figure 3. The next
sections describe with details the social navigation framework.

4 Adaptive Spatial Density Function for Robot
Navigation

4.1 Personal space modelling

Let S ∈ R2 be the space of the Global Map. An individual i is represented
by its pose (position and orientation), hi = [xi yi θi]

T , being [xi yi]
T ∈ S
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Fig. 3: Overview of the social navigation framework

and θi ∈ [0, 2π]. An asymmetric 2-dimensional Gaussian function is used for
modelling the personal space [1]. This function associates the distance between
a point p = [x y]T ∈ S and the person’s position with a real value gi ∈ [0, 1].
The expression for the Gaussian function is

ghi(x, y) = e−(k1(x−xi)
2+k2(x−xi)(y−yi)+k3(y−yi)

2), (1)

where the coefficients k1, k2 and k3 are used to take into account the orientation
θi, and are defined by the relations

k1(θi) =
cos(θi)

2

2σ2
+
sin(θi)

2

2σ2
s
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sin(2θi)
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where σs is the variance to the sides (θi ± π/2 direction) and σ represents the
variance along the θi direction (σh) or the variance to the rear (σr) [1]. Figure
4 illustrates an axample of the personal space model.

Once the personal space for each human in the environment is calculated, it
is used as the input of a global density function that clusters the individuals, as
the next section explains.

4.2 People clustering

According to [16], for two people in conversation and depending of the kind of
scenario, e.g., spaces open, spaces that are semi-open and spaces where there is
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Fig. 4: Contour map personal space of a single individual as modelled by Equa-
tion (1). The person is posed at h = [3.0m 4.0m 245o]T .

no pedestrian movement, six arrangements are the most frequent. These typi-
cal formations were shown in Fig. 2. In conversation of more than two people,
typical formations are defined as O-spaces [9]. Then, when considering groups
of humans, it is needed to define how to associate the various personal spaces of
each individual. In this paper, this association is accomplished by performing a
Gaussian Mixture.

Let ghi(p) be the personal space function for each individual i in the set of
all P of all people in S. The Global Density Space Function Gd(p) is defined as:

Gd(x, y) =
∑
i∈P

ghi(x, y). (2)

Once the association is performed and the value of Gd(p) is calculated, the
next stage is to separate people in groups. The method described in this paper
discriminates the group contour to which each individual belongs, so it can define
regions of forbidden navigation. This is accomplished by using a modified version
of the method described in Viera’s work [18], which is employed for grouping
points in a cloud of points to categorize them as to whether they belong to the
same object.

In order to group individuals into clusters, the method chooses the Ωd and Ωθ
parameters as the smallest euclidean distance and the smallest difference of an-
gles between two people hi(x,y, θ),hj(x,y, θ) ∈ P such that those two are neigh-
bours. These values are given by the insights of proxemics. If hi(x,y),hj(x,y)
are neighbours, then ‖hi(x,y),hj(x,y)‖ ≤ Ωd and ‖hi(θ),hj(θ)‖ ≤ Ωθ and the
density contribution δ between them is

δ = ghi(hj). (3)

Since ghi(hi) = 1 for each hi ∈ P , then if hi has k neighbours then G(hi) ≥
1 + kδ. Therefore, in order to group individuals who have at least k neighbours,
the method can adjust a density threshold φ given by

φ = 1 + kδ, (4)
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(a) (b)

Fig. 5: (a) shows a group of two people in points q1 = [4m, 3m]T and q2 =
[3m, 1.28m]T , with orientations θ1 = 245o and θ2 = 335o respectively. Both
two gaussians are also drawn. (b) shows the result of applying the clustering
algorithm to these groups with φ = 1.0.

and it can compare the value of the Global Function for each point in S and
determine whether that point belongs to the personal space of a group of indi-
viduals. The set of such points is denoted by J and given by the expression

J = {h ∈ S | Gd(p) ≥ φ}. (5)

By manipulating the value of φ either by setting it directly or by manipulating
the value of δ, it is able to control how near or far the border of J is in relation
to each human in the cluster. A validation of this parameter φ is described in
the next section. Figure 5b shows the result of applying this procedure to the
group shown in Figure 5a.

Finally, the contours of these forbidden regions are defined by a set of k
polygonal chain (i.e., polyline) Lk = {l1, ..., lk}, where k is the number of regions
detected by the algorithm. The curve li is described as li= {a1, ..., am}, being
ai = (x, y)i the vertices of the curve, which are located in the contour of the
region J . The number of vertices, m, is dynamically adjusted by the algorithm,
being the Euclidean distance between two consecutive vertices, d(ai, aj), less
than a fixed threshold dl.

5 Social navigation based in human-populated
environment

5.1 Socially Acceptable Navigation

Once the polygonal curves associated to each group of humans, Lk, has been
calculated, the proposed approach integrates this information in the path plan-
ners. First, the global planner traces a navigation plan for a given target T ∈ S.
Then, the local planner modifies the plan according to the obstacles and humans
detected by the robot’s sensor. In the proposed approach, the social navigation
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architecture is a modified version of the one presented in [19], which consists of
the next stages:

1. PRM-RRT path planners. First, a graph of the free space is created using a
generalized inverse kinematics algorithm, based on the Levenberg-Marquardt
method. This graph is used by the PRM planner [20] to search for a path
free of obstacles from the robot location to the target. In case that the graph
still had more that one connected region or there was not a direct line of
sight from the robot (or the target) to the graph, the RRT planner [21] is
used. Thus, the final graph that describes the free space is defined by a set
of nodes, N , and edges, E, Gt = (N,E). In Fig. 6, a descriptive example of
this graph is drawn as a set of nodes (red circles) and arcs (red lines). Next,
the path is created by first searching the closest point in the graph to the
current robot’s pose, the closest point in Gt to the target position T and a
path through the graph linking both points.

2. Elastic Band Path Optimization For the path optimization, the initial path
is transformed into a regularly separated series of way-points, or steps, at a
distant closer than the length of the robot. The elastic band path optimiza-
tion [19] updates the path planned for each step as it is traversed, adapting it
to unexpected events, such as obstacles or group of humans described by the
list of polylines Lk. As illustrated in Figure 6, the path is analysed under the
laser range, and two virtual forces are created. Let’s define the path P = pi
∈ R2 as an ordered set of (x, y) ∈ S locations – called steps – of the robot’s
configuration space. Then, an internal contraction virtual force is defined to
model the tension in a physical elastic band using the following equation:

fc = kc ·
(

pi−1 − pi
‖pi−1 − pi‖

+
pi+1 − p
‖pi+1 − pi‖

)
, (6)

where pi is the position of step i in the path. The physical interpretation is
a series of springs connecting the path steps, with kc as a global contraction
gain. These contraction forces are illustrated in green colour in Figure 6.
Also, a repulsive force is created to push each step away from the obstacles
and humans defined by Lk to increase the clearance of the robot. A function
d(p) is defined R2 × R2 → {R+ ∪ 0} that computes the minimum distance
of a step p to the nearest obstacle, as perceived by the laser sensor.

fr =

{
kr(ρ0 − ρ(p))∂ρ∂p p < ρ0

0 p ≥ ρ0

}
, (7)

where kr is a global repulsion gain and do is the maximum distance up
to which the force is applied. These repulsion forces are illustrated in blue
colour in Figure 6. The Jacobian ∂ρ

∂p is approximated using finite differences.
The final force is calculated as a linear combination of both, f = fc + fr,
that is continuously applied to each step inside the laser field. This force
modify the final path, as is shown in the Figure 6.
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Fig. 6: The final social path is shown as the blue continuous line (4). Besides,
the graph Gt provided by path planners (red colour), and the set of forces are
drawn.

6 Experimental results

6.1 Validation of the adaptive spatial density function

One of features of the proposed method is the existence of a set of parameters
to adjust. These parameters are:

– The Euclidean distance between two consecutive vertices in the polyline, dl.
– The density threshold φ, directly related to the type of formation defined in

[16].

The threshold value dl allows to dynamically adjust the number of vertices
of the polyline. A high value of dl implies that the polyline follows correctly the
shape of the forbidden area. On the contrary, a low value of this threshold creates
a shape of the forbidden region very different to the reality. In order to choose a
correct dl value, several simulated experiments with different individuals in the
scenario were tested. From these experiments, this threshold has been fixed to
dl = 10cm.

The threshold φ allows to correctly cluster individuals according to their
formation during a conversation. The process to approximate this value has
consisted on a set of simulated experiments with humans in different formations
and distances between them, dh. Table 1 summarizes the value of φ for these
formations (i.e., N-shape, Vis-a-vis, V-shape, L-shape, C-shape and Side-by-
side). The algorithm proposed in this paper adapts the threshold φ according to
the formation (red color in Table 1).

6.2 Navigation in real and Simulated scenarios

To validate the performance of the proposed algorithm, real and simulated sce-
narios were used. The algorithms have been developed in C++, as components
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Table 1: Different two-person formations and results of the clustering algorithm
in function of the threshold φ and the distance between humans dl.

N-shape Vis-a-vis V-shape
φ Distance Cluster (Y/N) φ Distance Cluster (Y/N) φ Distance Cluster (Y/N)
0,1 50 cm Y 0,1 50 cm Y 0,1 50 cm Y

100 cm Y 100 cm Y 100 cm Y
150 cm Y 150 cm Y 150 cm Y
200 cm Y 200 cm Y 200 cm Y

0,3 50 cm Y 0,3 50 cm Y 0,3 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm Y 150 cm Y 150 cm Y
200 cm N 200 cm N 200 cm N

0,5 50 cm Y 0,5 50 cm Y 0,5 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm N 150 cm Y 150 cm N
200 cm N 200 cm N 200 cm N

0,7 50 cm Y 0,7 50 cm Y 0,7 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm N 150 cm N 150 cm N
200 cm N 200 cm N 200 cm N

0,9 50 cm Y 0,9 50 cm Y 0,9 50 cm Y
100 cm N 100 cm Y 100 cm N
150 cm N 150 cm N 150 cm N
200 cm N 200 cm N 200 cm N

L-shape C-shape Side-by-side
φ Distance Cluster (Y/N) φ Distance Cluster (Y/N) φ Distance Cluster (Y/N)
0,1 50 cm Y 0,1 50 cm Y 0,1 50 cm Y

100 cm Y 100 cm Y 100 cm Y
150 cm Y 150 cm Y 150 cm Y
200 cm Y 200 cm Y 200 cm Y

0,3 50 cm Y 0,3 50 cm Y 0,3 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm Y 150 cm Y 150 cm Y
200 cm N 200 cm N 200 cm N

0,5 50 cm Y 0,5 50 cm Y 0,5 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm Y 150 cm Y 150 cm Y
200 cm N 200 cm N 200 cm N

0,7 50 cm Y 0,7 50 cm Y 0,7 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm N 150 cm N 150 cm N
200 cm N 200 cm N 200 cm N

0,9 50 cm Y 0,9 50 cm Y 0,9 50 cm Y
100 cm Y 100 cm Y 100 cm Y
150 cm N 150 cm N 150 cm N
200 cm N 200 cm N 200 cm N

of the framework RoboComp1. The tests in simulated scenarios have been per-
formed on a PC with processor Intel Core i5 2.4GHz with 4Gb of DDR3 RAM
and GNU-Linux Ubuntu 16.10. The robot Shelly of RoboLab has been the an-
thropometric social robot used in the real tests. In order to assess the effective-
ness of the proposed navigation approach, the methodology has been evaluated
accordingly to the following metrics in both scenarios: (i) minimum distance to
a human during navigation; (ii) distance travelled; and (iii) navigation time. A
comparative study of the proposal with the navigation architecture presented in
[19] is also provided.

The real scenario is located at RoboLab facilities, a 65m2 apartment with
different rooms, such as kitchen, bath or living-room. In this apartment, the same
two persons talk in a vis-a-vis formation in different poses, being dh=1.2m. The
robot Shelly navigates in this apartment to several targets2. Fig. 7 shows the
set-up of the experiment. The individuals are grouped as is shown in Fig. 7a. A
frame of the video recorded during the test is shown in Fig. 7b. Fig. 8 describes
the different stages of the adaptive spatial density function proposed in this

1 https://github.com/robocomp
2 A video of the real tests is accessible on https://youtu.be/zdTvhhZ7 uMs
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(a) (b)

Fig. 7: a) A representation of the real apartment used in the tests. The robot
Shelly must socially navigate between two groups of people in a vis-a-vis forma-
tion; b) A frame of the video recorded during the real tests.

paper. In Fig. 8a, the discomfort experienced by the individuals is modelled
using different curve lines of each Gaussian. In Fig. 8b is drawn the clusters of
persons after using the algorithm proposed in this paper. These clusters describe
the forbidden areas for the robot navigation and are related with the φ parameter
(phi = 0.7). Polilynes associated to each cluster are illustrated in Figs. 8c-8d.

(a) (b) (c) (d)

Fig. 8: a) four persons are located in the real apartment in a vis-a-vis formation;
b) discomfort areas; c) polylines generated by the algorithm; and d) Polylines
are used in the path-planning algorithm to modify the graph of free space.

The simulated scenario is a recreation of this same real apartment with 6 in-
dividuals in different formations (see Fig.9a), where the robot navigates between
different targets. The original graph of free space is shown in the Fig. 9b. The
isocontour maps of the personal space are shown in the Fig. 9c. In the Fig. 9d
is drawn the clusters of persons after using the algorithm.

Finally, a comparative study of the proposed navigation methodology and
the navigation system without social awareness [19] is included. For the real ex-
periment, the robot had to perform two different paths, navigating in a socially
acceptable way. Each path has been repeated 10 times. The mean values of the
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Table 2: Navigation results for the real apartment
Social navigation architecture Haut et al. [19]

Parameter Value Parameter Value

Travelled distance 8,03m Travelled distance 6.0m
Total time 52s Total time 50s

dmin Person 1 188cm dmin Person 1 26cm
dmin Person 2 79cm dmin Person 2 61cm

Travelled distance 8.64m Travelled distance 6.49m
Total time 59s Total time 52s

dmin Person 1 167cm dmin Person 1 88cm
dmin Person 2 83cm dmin Person 2 32cm

(a) (b) (c) (d)

Fig. 9: a) 3D visualization of the simulated environment; b) Initial graph gen-
erated for the path planners; c) Potential regions of discomfort of the humans
is modelled using Mixture of Gaussians; and d) cluster of persons, which define
the forbidden regions for navigation.

time used by the robot during its navigation so as its traveled distance are shown
on Table 2. The mean values of the minimum distances to each individuals, dmin,
are also shown in 2. The same information for simulated environment is summa-
rized in Fig. 3. The tests were achieved 10 times in the simulated environment
using always the same targets and positioning of objects and people. From the
results of the experiments, it is possible to conclude that the robot successfully
navigate in a socially acceptable way avoiding the group of individuals. In par-
ticular, dmin values using the navigation architecture proposed in this work are
higher than the navigation method without social skills. These dmin values al-
lows the robot to move around the humans without disturbing them. The total
time in reach the targets is higher, but it is normal due to the greater distance
travelled.

7 Conclusions

Despite the increasing use of mobile robots in many different areas and appli-
cations, the integration of these into a more social context still has a major
potential for growth. However, this requires the research and development of
techniques that will allow these robots to act in a way that is socially accept-
able.
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Table 3: Navigation results for the simulated apartment
Social navigation architecture Haut et al. [19]

Parameter Value Parameter Value

Travelled distance 21.99m Travelled distance 20.12m
Total time 175s Total time 140s

dmin Person 1 115cm dmin Person 1 45cm
dmin Person 2 160cm dmin Person 2 52cm

dmin Person 3 80cm dmin Person 3 43cm
dmin Person 4 82cm dmin Person 4 75cm
dmin Person 5 220cm dmin Person 5 71cm

dmin Person 6 109cm dmin Person 6 58cm

In this article, an adaptive spatial density function for social navigation in
human-populated environment is presented. This density function is used to ef-
ficiently cluster individuals into groups according to its pattern of arrangement.
Besides, a social navigation architecture is presented to execute the navigation
considering this social representation. The experiments demonstrate the perfor-
mance of the approach, so as the improvement of the robot’s social behaviour
during its motion in human-populated environment. .
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