
1

Experiments in self-calibration of an autonomous
mobile manipulator

A. Sánchez, P. Núñez, L. Manso, P. Bustos

Abstract—Current autonomous mobile manipulators are very
complex machines built with dozens of motors and sensors
connected through feedback loops. On top of this first layer
of real-time controllers, subsequent levels of software modules
interact in many ways to create increasingly sophisticated be-
haviors. One of the initial requirements for all these elements
to work properly, is that the robot be properly calibrated. The
size of each link and the relative positions among them have
to be estimated. Also, many sensors have intrinsic parameters
that have also to be estimated in order to relate the incoming
data to a common reference system. In this paper, this crucial
problem has been studied for a new humanoid robot named
Loki. Loki has been built in the Robotics and Artificial Vision
(RoboLab) laboratory for research in social and service robotics.
Two different optimization approaches have been explored, the
Levenverg-Maquardt gradient-descent procedure and a Markov
Chain Monte Carlo Simulated Annealing algorithm. Both meth-
ods are compared under this high dimension self-calibration
problem and the results are analyzed and compared. Finally,
several strategies to continue research in this area and to achieve
fully autonomous calibration and re-calibration procedures are
described.

Index Terms—Robotics, Mobile manipulators, self-calibration

I. INTRODUCTION

Autonomous Mobile Manipulators (AMM’s) are complex
mechatronic devices composed of dozens of motors and sen-
sors, controlled by networks of distributed processes running
on multi-core hardware. The tasks performed by these robots
usually require sensor fusion or vision-based manipulation
and, when different parts of the robot are coordinated to
achieve a certain goal, they must be calibrated. Calibration in
this context means that their inter-relationships must be well-
characterized. Sensors must be calibrated to the manipulators
and, also, sensors must be calibrated to each other. In vision-
guided manipulation tasks, for instance, the robot typically has
to grasp a target that has been localized in the visual reference
system. To succeed, a 3D point such as the tip of the right
hand finger seen by the left camera as pixel p(i, j), must be
very close to the pixel value q(i, j) obtained after computing,
using direct kinematics, the coordinates of the finger tip in
the left camera reference system and projecting them through
the camera model. If both values are similar enough, the arm
will be commanded to a location close to the target and the
task will be completed. An analogous situation can be applied
to the relationship between two sensors, like a camera and a
laser, or between two cameras placed on different effectors

A. Sánchez, P. Núñez, L. Manso and P. Bustos are with RoboLab, University
of Extremadura.
E-mail: agustind@unex.es, pbustos@unex.es

of the body. Our long term goal is to develop self-calibration
behaviors for AMMs that could be executed opportunistically
causing a minimal interference with other running behaviors.
In reaching this final objective, we have started by studying
self-calibration procedures using the complete kinematic struc-
ture of the robot Loki. The basic idea is to perturb some initial
robot configuration and to recover these initial values using
optimization methods. To this end, the robot shows himself
-to its sensors- a known object in different poses to generate
a rich set of calibration data. Due to the non-linear nature
of the optimization problem and to the physical constraints
that the final solution must meet -i.e. limits in how much
resizing is admitted for metal pieces-, both a gradient descent
method and a stochastic method have been evaluated. The
complexity of the robot Loki, see Section II, suggests to begin
this self-calibration procedure with a wide set of simulation
experiments These experiments will cover the comparison of
stochastic versus gradient optimization methods, the number of
parameters that can be simultaneously adjusted, the grouping
of sets of parameters according to anatomical localization -
i.e. hand, arm, head, cameras-, the nature of these param-
eters -i.e. mechanical offsets, gear reduction ratios, encoder
uncertainty, optical parameters- and the initial knowledge
about the uncertainties in the mechanical structure and sensor
parameters. The rest of the paper is organized as follows:
Section II describes the robot Loki. In Section III previous
approaches to the problem will be introduced and compared to
our own approach, in Section IV the forward kinematics of the
robot will be briefly described to introduce the mathematical
notation used in the other sections, Section V explains how
the optimization problem is approached, in Section VI all the
experiments are described and the results analyzed, and finally,
the paper is closed with some conclusions and a description
of future work.

II. LOKI THE ROBOT

Loki is a robot built as a collaboration between the SIMD
group at the Castilla-La Mancha University and RoboLab
at Extremadura University. Figure 1 shows an early one-
arm version of the robot. This robot has been built as an
advanced social robotics research platform. The mobile base
of Loki holds batteries, energy management electronics, local
controllers and a high-end dual-socket Xeon board that will
soon receive an NVIDIA GTX 690 featuring 3072 CUDA
cores. Standing on it, a rigid column supports the torso which
holds two arms and a expressive head. Each arm has 7 degrees-
of-freedom (DOF) in anthropomorphic configuration built with
a combination of Schunck motors in the upper arm and a



2

Fig. 1: Loki, a humanoid social robot build by RoboLab

custom-made 3 DOF forearm, a 6 DOF torque-force sensor in
the wrist and a 4 DOF BH8 Barret hand with three fingers. The
head is connected to the torso by a 4 DOF neck and has two
orientable Point Grey Firewire cameras, an ASUS Xtion range
sensor and 5MP Flea3 camera. It also features an articulated
yaw and eyebrows for synthesis of facial expressions and
microphones and a speaker for voice communication. The
total number of DOF is 37. The control of all these elements
is performed by a set of components created with the open
source robotics framework RoboComp [1]. The robot currently
can execute a basic repertoire of navigation, manipulation,
and interaction behaviors that are under active development
in other research projects [2].

III. RELATED WORK

Calibration of robot kinematics and its sensors has always
been an active area of research and there are many contribu-
tions dealing with this topic. A crude division can be made
attending to the object of interest. For example, in the camera
calibration problem the goal is to compute the intrinsic and
extrinsic parameters of the sensor using some knowledge of the
environment [3] [4] [5] [6]. Stereo and multi-camera settings
also fall within this category [7]. A second block can be
assigned to calibration of kinematics parameters for robotics
manipulators [8] [9] [10] [11] [12]. The combination of
sensors attached to kinematic structures is a more complex
problem. There are many works about the so called hand-eye
calibration problem that deals with the computation of the
relative position and orientation between the robot gripper and
a camera mounted rigidly on the gripper [13] [14] [15] [16]
[17] [18]. When the robot holds its own calibration object
there are new restrictions that can be added to the original
camera calibration problem. Moreover, the selection of more
informative poses becomes an interesting problem by itself.
The combination of optimization and pose selection leads to
the exploration-exploitation trade-off. Finally, the most general

setups are those in which multiple sensors are calibrated
simultaneously [19] [20]. The work of Pradeep et al. [20] on
a self-calibration method for the Willow Garage’s PR2 robot
[21] is a milestone in this specific view of the problem focused
on robot autonomy. They propose a probabilistic formulation
of a measurement model that allows to express measures from
sensors with different uncertainty parameters and localized on
distant kinematic structures in a common scale. This scale is
obtained by propagating each sensor’s uncertainty through its
kinematic chain up to the common point where the comparison
is made. At the cost of computing large Jacobians, measures
are weighted by their accumulated uncertainty before entering
the final error computation. However, the paper barely explores
the problem of non-convergence situations and does not deal
with strategies for on-line and opportunistic implementations.
Building on these recent ideas and also on the background
provided by the field, we have started a research line with the
goal of building self-calibration behaviors for the Loki AMM,
that can be both robust and efficient while running opportunis-
tically with the rest of its control architecture. To achieve this
goal an initial evaluation of global and gradient optimization
methods will be performed with a set of experiments designed
for this specific context.

IV. KINEMATIC MODEL

The robot Loki has an anthropomorphic configuration that
is schematically reproduced in Figure 2. Each of the nodes
in the graph can represent more than one joint. For example,
the shoulder complex is composed of three motors that define
three DOF’s. Each joint is assigned a reference system that

Fig. 2: Schematic kinematics of robot Loki

is represented as a 4x4 matrix encoding a 3D rotation and
translation vector. A point in 3D space can be referenced with
respect to two different systems, as is shown in Figure 3. The
point P is represented in reference system B as the vector
PB , and in reference system A as the vector PA. It is easy to
change from one reference system to another if the last one is
expressed as a rotation and translation from the former one.
The resulting function has six parameters, three angles for the
rotations and three coordinates for the translation vector:

H = f(Tx, Ty, Tz, α, β, γ) (1)

where Tx, Ty, Tz are the translation components and α, β, γ,
are the rotation angles with respect to to axis x, y, z.



3

Fig. 3: Change of reference system

This function can be written more compactly in matrix form
as:

Hi =


c2ic3i −c2is3i s2i Txi

c1is3i + s1is2ic3i c1ic3i − s1is2is3i −s1ic2i Tyi
s1is3i − c1is2ic3i s1ic3i + c1is2is3i c1ic2i Tzi

0 0 0 1


(2)

where: s1i = sin(αi), c1i = cos(αi), s2i = sin(βi), c2i =
cos(βi), s3i = sin(γi), c3i = cos(γi)
This matrix allows us to transform a point in reference system
B to reference system A. This is achieved multiplying the
vector expressed in B times this matrix:

XA

YA
ZA

1

 = HA
B


XB

YB
ZB

1

 (3)

where XB , YB , ZB are the 3D coordinates of the point in B
and XA, YA, ZA are the final coordinates in reference system
A.
This operation can be chained to transform directly between
two reference systems A and C linked by B. Figure 4 shows
this situation. The resulting matrix is computed as:

Fig. 4: Chainning transformations


XA

YA
ZA

1

 = HA
BHB

C


XC

YC
ZC

1

 (4)

Fig. 5: Robot configuration for self-calibration

In the case of the robot Loki, to get from the hand to the eye it
is necessary to go through 15 intermediate reference systems,

X1

Y1
Z1

1

 = H1
2H2

3...H
13
14H14

15


X15

Y15
Z15

1

 (5)

that makes a total of 90 parameters. To complete the arm-eyes
kinematic chain, the cameras intrinsic parameters matrices
have to be appended adding at least 6 more parameters,
2 focals and 2 optical centers. The translation vector of
each transformation matrix encodes the length and positions
of the bones making up the arms, torso and neck. These
values are known from fabrication and assembly data but can
carry a variable amount of uncertainty. Knowledge of this
uncertainty will be very useful in initializing and bounding
the optimization procedures.

V. PROBLEM STATEMENT

The initial self-calibration procedure starts by placing a
calibrated checkerboard with 100 corners in the hand of the
robot and making it change to different poses recording the
image captured by the cameras. Being a simulation, for each
pose the set of 3D corners in the board is projected through
the cameras to obtain a list of pixel coordinates. Also, the
3D coordinates of the corners in the checkerboard reference
system are propagated through the kinematic equations up to
the camera. Once they are transformed to the camera reference
system, they are projected to obtain the second set of pixel
coordinates. Without additional perturbations, both sets are
exactly the same. We now proceed to change a subset of the
parameters in the kinematic chain and re-project the set of 3D
corners to obtain a new set of misaligned pixel values. Figure
5 shows a schema of the experimental setup. A quadratic error
expression can be readily computed as:

E =

N∑
n=1

(pcn − f(pkn
,H1

2H2
3...H

13
14H14

15, Pc))
2 (6)

where pcn is the point n seen by the camera and f is the
kinematic function that transforms this point from the checker-
board reference system (pkn

) to the camera. Pc is the camera
projection matrix. We want to find the minimum of this error
function with respect to a subset of the parameters Hj

i that



4

define the robot kinematics. The complete set of parameters
defines a non-linear minimization problem over 96 variables.
We will approach the problem by selecting blocks of parame-
ters. Note that this approach does not use inverse kinematics so
there is no issues with ambiguous end-configurations. Instead,
we sample the direct kinematics space searching form admissi-
ble solutions. Two different optimization methods will be used,
the gradient descent Levenberg-Maquardt (LM) algorithm and
the stochastic simulated annealing (SA) method.

The Levenberg-Marquardt method is a standard technique
used to solve nonlinear least squares problems. It is actually
a combination of two minimization methods: the gradient
descent method and the Gauss-Newton method. In the gradient
descent method, the sum of the squared errors is reduced
by updating the parameters in the direction of the greatest
reduction of the least squares objective. In the Gauss-Newton
method, the sum of the squared errors is reduced by as-
suming that the least squares function is locally quadratic.
The Levenberg-Marquardt method acts more like a gradient-
descent method when the parameters are far from their optimal
value, and acts more like the Gauss-Newton method when the
parameters are close to their optimal value [22] [23] [24].
We use the available Matlab implementation.

Simulated Annealing is a variation of standard Markov
Chain Monte Carlo algorithms designed to search for global
minima in arbitrary surfaces, instead of approximating such
surfaces. The basic idea of MCMC algorithms is to define
a proposal function that provides samples from the function
to minimize following a certain probability distribution and
a admissibility criterion to accept or reject the sample. The
difference with respect to the standard Metropolis-Hastings
algorithm is that there is a so called cooling schedule that
decreases the probability of accepting a solution with higher
error than the current one. The following pseudo-code shows
the idea:

1) Initialise x0 and set T0 = 1
2) For i=0 to N-1

• Sample u ∼ υ0,1
• Sample x∗ ∼ q(x∗|x(i))

• If u < A(x(i), x∗) = min

{
1, p

1
Ti x∗q(x(i)|x∗)

p
1
Ti x(i)q(x∗|x(i)

}
xi+1 = x∗

else
xi+1 = x(i)

• Set Ti+1 according to a chosen cooling schedule

where u is a sample from an uniform distribution, q is the
proposal distribution that generates a new sample of the
parameters of the function to be optimized, given the last
accepted set of values, A is the acceptance function and p(x) is
the value of the optimized function for the set of parameters
x [25][26][27]. The probability of accepting a new sample
follows a decreasing cooling schedule with limi→∞Ti = 0.
Levenberg-Marquardt is expected to obtain a much lower error
for a well-formed convex error landscape. However, as Table I
shows, there are situations in which no convergence is attained.
Also, it is also possible to obtain low error solutions with

TABLE I: Experiment showing poor convergence results of
individual methods and low final error when both methods

are combined.

Param. Pose 1 Toler. Perturbation LM SA SA+LM
1 -0,7804 0,02 0,005 1370,4 -0,0049 -0,0011
2 0,0050 0,02 0,005 -2,4 0,0003 -0,0050
3 0,0050 0,02 0,005 11,4 0,0040 -0,0050
4 1,5758 0,02 0,005 -17,6 -0,0013 -0,0050
5 0,0125 0,05 0,0125 3,3 0,0225 -0,0125
6 0,7500 3 0,75 4348,6 0,5346 -0,7500
7 1,0597 0,05 0,0125 6,5 -0,0243 -0,0125
8 0,0125 0,05 0,0125 0,3 0,0062 -0,0125
9 0,0125 0,05 0,0125 -2956,5 0,0153 -0,0236
10 0,7500 3 0,75 30726,4 1,7080 0,9795
11 0,0125 0,05 0,0125 -6105,1 -0,0100 -0,0224
12 0,0125 0,05 0,0125 98,3 -0,0037 -0,0126
13 0,5000 2 0,5 6657,2 0,1549 0,1588
14 0,2500 1 0,25 134231,5 -0,3654 -0,1380
15 0,2500 1 0,25 121379,8 0,4714 0,2012
16 1,0000 4 1 20523,8 0,6005 0,5942
17 0,2500 1 0,25 4336,4 -0,3131 -0,5424
18 0,2500 1 0,25 7010,4 0,1844 0,9129
19 0,2500 1 0,25 -14589,0 0,5305 0,5421
20 0,2500 1 0,25 0,0 0,1304 0,1304
21 0,2500 1 0,25 -1056,5 0,0901 -0,2500
22 0,2500 1 0,25 -18760,4 -0,0738 -0,5246
23 0,2500 1 0,25 -7381,2 0,0997 -0,2499
24 0,2500 1 0,25 21409,6 0,2144 0,3474
25 0,2500 1 0,25 2818,3 -0,3209 -0,5424
26 0,2500 1 0,25 -11007,1 -0,0339 -0,2500
27 0,2500 1 0,25 -13568,3 -0,0142 -0,2499
28 0,2500 1 0,25 4509,7 0,4805 0,3475
29 0,0050 0,02 0,005 1372,9 -0,0084 -0,0018
30 0,3750 1,5 0,375 32843,2 -0,1445 -0,8726
31 0,3750 1,5 0,375 725,5 0,1929 0,2059
32 0,3750 1,5 0,375 -11157,4 0,4155 -0,0359

Initial error 8,2031E+09 8,2031E+09 8,2031E+09
Final error 7,2587E+09 1,8874E+06 2,0657E-12

Relative error 8,8487E-01 2,3008E-04 2,5182E-22

physically unfeasible values for the parameters -i.e. elongated
links or unrealistic offsets between joints. On the other hand,
Simulated Annealing can find global minima but may show
very low convergence rates in flat error regions. Table I
shows this kind of situation for an experiment involving 32
free parameters and visual data obtained from 5 different robot
configurations, although only Pose 1 is shown in the Table for
clarity. Perturbation is the deviation introduced to the initial
value of the free parameters. Columns LM and SA show the
final error for each method. The SA+LM shows the final error
after applying both methods in sequence. Later, in Experiment
7, the results shown in the table are further discussed. The
goal of the experimental work done here is to characterize
the behavior of both methods in this specific calibration
problem, as a prior step to the design of autonomous and
opportunistic self-calibration procedures that will form part
of Loki repertoire of behaviors.

VI. EXPERIMENTS

In order to evaluate both optimization methods a set of
experiments have been designed using Matlab. In these ex-
periments the optimal values of the free parameters have been
estimated. The absolute final error and a relative error have
been used for comparing the outcome of each experiment.
The relative error (Re) is defined as:

Re =
Ec

Ebc
(7)

where Ec and Ebc represent the final error after calibrating the
robot and the initial error before calibrating, respectively. Table
II shows the subset of 32 parameters used in the experiments.
In the next subsections a more detailed description about each
experiments is provided.



5

TABLE II: List of the different calibration parameters used
in the experiments.

Number of parameters Description
Test 1

2 shoulder rotation over the X axis
shoulder rotation over the Y axis

Test 2 Test 1 plus
4 shoulder rotation over the Z axis

elbow rotation over the Z axis
Test 3 Test 2 plus

8 wrist rotation over the x-axis
wrist rotation over the y-axis
wrist rotation over the z-axis

wrist translation over the z-axis
Test 4 Test 3 plus

16 neck rotation over the x-axis
neck rotation over the y-axis
neck rotation over the x-axis

neck translation over the z-axis
Motor1 encoder (eye)
Motor2 encoder (eye)
Motor3 encoder (eye)

radio (eye)
Test 5 Test 4 plus

32 Motor1 (shoulder) translation over the x-axis
Motor1 (shoulder) translation over the y-axis
Motor1 (shoulder) translation over the z-axis

Motor1 (shoulder) rotation over the x-axis
Motor2 (shoulder) translation over the x-axis
Motor2 (shoulder) translation over the y-axis
Motor2 (shoulder) translation over the z-axis
Motor3 (shoulder) translation over the x-axis
Motor3 (shoulder) translation over the y-axis
Motor3 (shoulder) translation over the z-axis

Motor (eldow) translation over the x-axis
Motor (eldow) translation over the y-axis
Motor (eldow) translation over the z-axis

Traslation (eye) over the x-axis
Traslation (eye) over the y-axis
Traslation (eye) over the z-axis

Fig. 6: Gradient descent with varying number of free
parameters

A. Experiment 1. Gradient descent with varying number of
free parameters

In this experiment we test the behavior of the LM method
when the number of free parameters is increased. The values
used are 2, 4, 8, 16 and 32, out of the 92 total number of
parameters, see Table II. The rest of the parameters where
kept to their initial value. Figure 6 shows the results with the
error in each case. The curve shows an expected increase in
the error with the number of free parameters.

Fig. 7: Gradient descent with varying number of robot poses

B. Experiment 2. Gradient descent with varying number of
robot poses

This next set of experiments with the LM method show
the variation of the error when the number of robot poses
increases. Each pose is a different set of initial values for
the joints of the robot and also a different set of pixels
corresponding to the checkerboard corners. The error function
is the sum of errors for each pose:

ET =

P∑
p=1

(Ep) (8)

where Ep is the error in pose p given by the equation 6. Five
different poses have been used with 32 free parameters in each
one. To find out how the number of poses affects the final
error we start with one pose and obtain a set of values. Then,
these values are injected in the remaining poses to compute
the error in each pose due to the calibration obtained initially.
Afterward, the same procedure is repeated using two poses for
calibration and so on until completing the five poses. Figure
7 shows the evolution of the relative error. The error decreases
with the number of poses, showing that a better sampling of
the error space leads allows the method to find an optimum
with very low final error.

C. Experiment 3. Simulated Annealing varying the sampling
distributions of the free parameters

This experiment shows the behavior of the SA method in
relation to the sampling distribution of the free parameters.
An important advantage of the sampling approaches is that the
sampling distribution can include prior knowledge about the
variation range of the free parameters. As proposal distribution
we use a set of independent normal gaussians centered at
the last accepted point. Their variances are computed from
previous knowledge of the mechanical structure and of the
total admitted tolerance. For each parameter the proposal
distribution q is defined as,

q(x∗i |x(i)) ∼ N (pi, κti) (9)

where pi is the last accepted value of parameter i, κ is a
factor and ti is the tolerance of parameter i. For each value of



6

Fig. 8: Error in Simulated Annealing for different sampling
variances of the free parameters

Fig. 9: Error in Simulated Annealing for different number of
iterations

the variance, 20 different runs have been done to compute the
mean and variance of the error. There were 32 free parameters
and only one pose. The variance range goes from κ = 0.001
to κ = 10. As Figure 8 shows, the error increases with the
variance value but if the variance is very small the error
increases very quickly. The reason is that with too small
perturbations the method can’t reach the global minimum.

D. Experiment 4. Simulated Annealing varying the number of
running iterations

The other important parameter that we want to test for the
SA algorithm in the self-calibration problem is the number of
iterations. Three experiments were performed with 100, 1.000
and 10.000 epochs. As expected, the error decreases when the
number of iterations increases. Figure 9 shows the results of
the experiment.

Fig. 10: Simulated Annealing varying the number of free
parameters

Fig. 11: Error in Simulated Annealing with different number
of robot poses

E. Experiment 5. Simulated Annealing varying the number of
free parameters

We also have tested the SA method with respect to the
number of free parameters, with values 2, 4, 8, 16 and 32.
Figure 10 shows the evolution of the error in this context.
The results are similar to the LM method.

F. Experiment 6. Simulated Annealing varying the number of
poses

This experiment tests the behavior of SA with a varying
number of poses, each one generating a set of calibration data.
Like in the Experiment 2, 32 free parameters have been used
in a number of poses going from 1 to 5 poses. Figure 11,
shows how the relative error decreases with the number of
poses, showing a similar behavior to the LM method.



7

G. Experiment 7. Combining SA and LM to avoid local
minima

As the former experiments have shown the LM method
achieves lower error values in many situations. However, there
are cases in which LM does not converge to an usable state.
In some cases, the parameter values are way out of the
admissible physical range and, in others, the method gets stuck
in a local minimum far from the global one. The results or
this experiment were shown in Table I and indicate how a
combination of both methods, based on a simple observation
of the evolution of the error, can provide excellent results -
2.06E-12- in a difficult, but not unusual, calibration situation.
The experiment uses 32 free parameters and 5 robot poses.
Table I shows the initial value of each parameter in the first
pose, the maximum tolerance admitted for each parameter, the
perturbation introduced to the first pose, the values obtained
with LM, with SA and, finally, the values obtained running first
SA and then LM. The last row shows the error values before
and after calibrating, and the relative error in both situations.

VII. CONCLUSIONS AND FUTURE WORK

After this set of experiments it is clear that with good initial
conditions the LM method achieves more accurate results. The
problem for a self-calibrating robot is that this method may
fail in some situations, returning values for the parameters out
of the physically admissible range or not being able to find a
low minimum of the error function. When this happens, the
best action is to use the SA method to find a position close
to the global minimum and restart LM from that position.
SA always returns values inside the admitted tolerance and
always achieves a lower error than the initial one, so this
procedure can be iterated several times until convergence. This
initial experiences with the optimization methods will allow
us to design efficient procedures for self-calibration during
real-world operation of the robot. Much work remains to be
done in order to build an opportunistic behavior that can
observe and wait until a propitious situation presents. This
behavior should periodically evaluate the calibration state of
the robot and detect situations in which known size objects are
manipulated by the robot, thus capturing valuable data that can
be used to re-calibrate the kinematic and sensor parameters. A
new component is already being developed under RoboComp
to implement and test several opportunistic self-calibration
strategies. Also, we plan to extend the experiments to include
additional sensors and the base odometry.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Ministerio de Ciencia e Innovación TIN2011-27512-C05-04,
IPT-430000-2010-002 and AIB2010PT-00149 and the Junta de
Extremadura projects IB10062.

REFERENCES

[1] RoboComp http://robocomp.sourceforge.net
[2] L.J. Manso, P. Bachiller, P. Bustos, P. Nuñez, R. Cintas and L. Calderita.

RoboComp: a Tool-based Robotics Framework. Simulation, Modeling and
Programming for Autonomous Robots (SIMPAR). Pages 251-262. 2010.

[3] R. Y. Tsai, A versatile camera calibration technique for high accuracy
3D machine vision metrology using off-the-shelf tv cameras and lenses.
IEEE Journal on Robotics Automation, vol. 3, no. 4, 1987.

[4] Z. Zhang, Flexible camera calibration by viewing a plane from unknown
orientations. International Conference on Computer Vision, 1999.

[5] J. Heikkila and O. Silven, A four-step camera calibration procedure with
implicit image correction. IEEE Conference on Computer Vision and
Pattern Recognition, 1997.

[6] J. Bouguet, Caltech camera calibration toolbox for MATLAB. Caltech,
Tech. Rep., 2008.

[7] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, March 2004.

[8] Charles W. Wampler, John M. Hollerbach, Tatsuo Arai, An Implicit Loop
Method For Kinematic Calibration and Its Application to Closed-Chain
Mechanisms, IEEE Transactions on Robotics and Automation, Vol 11,
No 5, pp. 710-724. October 1995. R. Bernhardt and S. Albright, Robot
calibration. Kluwer, 1993.

[9] H. Zhuang, J. Yan, and O. Masory, Calibration of stewart platforms and
other parallel manipulators by minimizing inverse kinematic residuals.
Journal of Robotics Systems, 1998.

[10] H. Zhuang, S. Motaghedi, and Z. Roth, Robot calibration with planar
constraints. International Conference on Robotics and Automation, 1999.

[11] S. Besnard and W. Khalil, Identifiable parameters for parallel robots
kinematic calibration. International Conference on Robotics and Automa-
tion, 2001.

[12] L. Beyer and J. Wulfsberg, Practical robot calibration with ROSY.
Robotica, vol. 22, pp. 505-512, 2004

[13] Gin-Shu Young, Tsai-Hong Hong, Martin Herman, and Jackson C. S.
Yang, Kinematic Calibration of an Active Camera System. IEEE, pp.
748-751. 1992.

[14] R. Horaud and F. Dornaika, Hand-eye calibration. International Journal
of Robotics Research, vol. 14, no. 3, pp. 195–210, 1995.

[15] Mengxiang Li, Kinematic Calibration of an Active Head-Eye System.
IEEE Transactions on Robotics and Automation, Vol 14, No 1, pp. 153-
158, February 1998.

[16] G-Q Wei, K Arbter, and G Hirzinger. Active self-calibration of robotic
eyes and hand-eye relationships with model identication. IEEE Trans. on
Robotics and Automation, pp:158,165, 1998.

[17] K. Daniilidis, Hand-eye calibration using dual quaternions. International
Journal of Robotics Research, 1999.

[18] N. Andreff, R. Horaud, and B. Espiau. Robot Hand-Eye Calibration
Using Structure from Motion. Journal of Robotics Research, 20:228-248,
2001.

[19] Quoc V. Le and Andrew Y. Ng, Joint calibration of multiple sensors.
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3651–3658. 2009.

[20] Vijay Pradeep, Kurt Konolige, Eric Berger, Calibrating a multi-arm
multi-sensor robot. International Symposium on Experimental Robotics
(ISER). 2010.

[21] PR2. http://www.willowgarage.com/pages/pr2/overview
[22] K. Levenberg. A Method for the Solution of Certain Non-Linear Prob-

lems in Least Squares,The Quarterly of Applied Mathematics, 2: 164-168.
1944.

[23] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters, Journal of the Society for Industrial and Applied Mathemat-
ics, 11(2):431-441, 1963.

[24] Henri Gavin. The Levenberg-Marquardt method for nonlinear least
squares curve-fitting problems, Department of Civil and Environmental
Engineering Duke University, 2011

[25] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. Optimization by
simulated annealing, Science 220, 671-680. 1983

[26] Cerný, V. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm, Journal of Optimization Theory
and Applications 45: 41-51. 1985.

[27] C. Andrieu, N.De Freitas, A. Doucet, and M. I. Jordan. An Introduction
to MCMC for Machine Learning Science: 5-43. 2003.


