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Resumen

En los últimos años el estudio de la navegación social de robots autónomos se ha

convertido en un tema de investigación de gran importancia debido a su creciente uso

en diferentes sectores de la sociedad.

Al navegar en entornos con humanos es necesario los robots tengan la capacidad de

comportarse de una manera socialmente aceptable: deben reconocer a las personas y

darles un trato especial. Además, deben ser capaces de adaptar su comportamiento

al entorno que les rodea, ya sean espacios abiertos o pasillos estrechos. En estos

escenarios, la interacción humano-robot se convierte en un tema de gran importancia,

pues los robots deben tener en cuenta las decisiones humanas para un correcto

comportamiento social.

Este Trabajo Fin de Máster se trata de una continuación del Trabajo Fin de

Grado del mismo autor, en el que se presentaba un algoritmo de navegación social,

considerando únicamente entornos con grupos de humanos presentes. En este trabajo

se proponen varias mejoras para el agoritmo anterior. Entre ellas: tracking de humanos

en tiempo real; la adaptación del espacio personal de los humanos al entorno en el que

se encuentran; la consideración de espacios interactivos; y finalmente, la propuesta de

un dominio de planificación de interacciones humano-robot (HRI).

Se han llevado a cabo numerosos ensayos que proporcionan una visión estadı́stica

del rendimiento de los diferentes métodos propuestos, utilizando para ello métricas

comunes en este tipo de evaluaciones. Las distintas pruebas realizadas aportan como

resultado principal una mejora notable en el comportamiento social del robot, en

comparación con los resultados obtenidos con el algoritmo inicialmente propuesto.





Abstract

In recent years the study of social navigation of autonomous robots has become a major

research topic due to its increasing use in different sectors of society.

When navigating in human environments it is necessary for robots to have the

ability to behave in a socially acceptable way: they must recognize people and give

them special treatment. In addition, they must be able to adapt their behaviour to

the environment around them, such as open spaces or narrow corridors. In these

scenarios, human-robot interaction becomes an important issue, as robots must take

human decisions into account for proper social behaviour.

This end-of-master project is a continuation of the end-of-degree project by the

same author, in which a social navigation algorithm was presented, considering only

environments with groups of humans present. In this work several improvements are

proposed for the previous agorithm. Among them: tracking of humans in real time; the

adaptation of the personal space of humans to the environment in which they are found;

the consideration of interactive spaces; and finally, the proposal of a human-robot

interaction (HRI) planning domain.

Numerous tests have been carried out that provide a statistical view of the

performance of the different methods proposed, using common metrics in this type of

evaluation. The main result of the different tests performed is a notable improvement

in the social behaviour of the robot, in comparison with the results obtained with the

initially proposed algorithm.
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Chapter 1

Introduction

Social robotics is a growing area whose benefits are beginning to be reflected in society.

Nowadays it is common to use assistance robots in different environment such as

schools, museums, airports, or even homes. In these scenarios humans cohabit with

robots, reason why the robot needs to carry out its daily activities in a socially accepted

way.

In recent years, the concept of Socially Acceptable Navigation has become a

topic of great interest among the scientific community. Social robotics extends the

definition of mobile robots to human-populated environments. To achieve a proper

social navigation, certain non-verbal rules must be respected, especially those related

to the personal space of humans. These rules are studied in proxemic (i.e., relationships

between distances and type of interaction), term introduced by Edward T. Hall in [2].

Social robots must be able to generate different socially accepted routes as well as

respecting the personal space of humans, showing socially acceptable behaviors and

interacting with them in a friendly manner. For this reason, the study of Human-Robot

interaction (HRI) to analyze the different aspects inherent to the interactions between

humans and robots, becomes crucial in Social Navigation.

Currently, one of the main problems of Social Navigation is indoor navigation. This

problem has traditionally been addressed from Metric Maps built by the robot from its

own sensors. As an alternative, the research evolved to the use of semantic information
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of the environment, Semantic Maps, which allowed the navigation of the robot through

high level entities within the environment (go to the kitchen, look for where the dining

room is). The problem of social navigation establishes a union of both systems, metric

and semantic, giving the first semantic information and relating these with the criteria

for a navigation accepted by humans. It is what is known as Social Mapping: forbidden

navigation zones or penalized for disturbing during a conversation or for interrupting

the visual field of the human towards a certain object. The concept of social mapping

was introduced in [3].

Building a map of the environment is not the only problem that social navigation

must solve. In order to achieve socially acceptable navigation, it is also necessary

to take into account a large number of procedures, such as path planning or robot’s

localization. Solving all these problems in a end-of-master project is impossible. For

this reason, this work focuses on the development of a social indoor navigation system

for human populated environments that also includes the planning of human-robot

interactions.

(a) Office environment
composed of two rooms

(b) Narrow corridor

Figure 1.1: Examples of scenarios in which robots have navigate using social rules.
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CHAPTER 1. INTRODUCTION

This work is based on the social navigation system proposed in [1]. The system was

developed in the Robotics framework Robocomp, created by Robolab (University of

Extremadura). This algorithm proposed a Social Map of the environment, establishing

the personal space of a human, clustering interacting people and defining regions

where navigation was forbidden. It was tested in simple environments, where there

were no obstacles near the human. However, in real and complex environments, such

as an office or a home, there are certain situations that must be taken into account

when developing a realistic human-centred navigation system. This work proposes the

improvement of the original social navigation algorithm in many aspects:

When a robot navigates in human-populated environments, a data acquisition

system capable of capturing human-related information in real time is required. In

addition, human information is not fixed, as they move freely around the environment.

The system must be able to track the human during this movement, so that for

any instant of time, its pose (i.e., position and orientation) is estimated. As a first

improvement, this work proposes the use of Astra RGBD sensors for the recognition

and tracking of people.

Once humans have been detected, this work proposes two methods to achieve a

social navigation system adapted to the spatial context, in order to avoid the robot

being blocked in certain scenarios, such as narrow corridors. First, an algorithm to

deform the personal space according to the environment in which the person is located

(corridors, small or large rooms) is presented. Secondly, an algorithm that defines

different interactions spaces around humans and modifies the robot behavior according

this areas is proposed.

It has been taken into account that there may be situations in which humans do

not interact with each other, but with objects in the environment. In these cases, the

robot must also behave in a social way, avoiding interfering in the interaction. For this

reason, interactive spaces are also considered in this work, including the concept of

Spaces Affordance [4], areas located around objects with which people usually interact.

The robot must respect these spaces and avoid them if humans are interacting with the
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object (Activity Spaces).

In Fig. 1.1 are shown different situations where the robot must navigate in

human-populated scenarios in which there are blocked areas in the routes planned.

In this situations the robot must approach the person, or group of people, and interact

with them to ask for permission or collaboration to pass. As a final contribution, this

works proposes a method that allow robots to have the ability to develop human-robot

interactions (HRI) when navigating in human-populated environments. The domain of

action that must have the navigation component is defined in this work.
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Chapter 2

Goals

This work is based on the hypothesis that it is possible to improve the human

experience with an assistance robot in real environments with a robust social navigation

system and a human-robot interaction planner for human-centered navigation.

Therefore, the main objective of this work is to advance in the line of social navigation

of autonomous robots in real environments with humans.

There are different challenges to carry out this goal, reason why in the develop of

this work, a set of specific objectives has been necessary to achieve:

• To adapt of the algorithm proposed in [1], basis of this work, to the changes

suffered during the last year in the cognitive architecture CORTEX used in the

Robotics framework Robocomp.

• To detect and track of people in real time, in addition to insert in the robot

cognitive architecture their pose in order that the data of the person can be used

by other agents within RoboComp.

• To compare different methods to give flexibility to the personal space, in order

to avoid the robot being blocked in certain situations.

• To consider interactive spaces by introducing the concept of Spaces Affordances,

areas that the robot should avoid due to the fact that people usually perform

interactions inside.
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• To propose a human-robot interaction planning system to fill the gaps of the

model. For example, to ask for permission when a person blocks the path.

• To validate the system with different tests and experiments.

6



Chapter 3

Related Work

Robot navigation in crowded environments has been extensively studied in the last

years and several theories and methods have been proposed since then. Particularly

interesting reviews have been presented in [5, 6] and more recently [7]. Classic

social navigation paradigms are based on using well-known navigation algorithms,

and therefore adding social conventions and/or social constraints. Different works

such as [8, 9], have shown that the same proxemic zones that exist in human-human

interaction can also be applied to human-robot interaction scenarios. A broad survey

and discussion regarding the social concepts of proxemics theory applied in the context

of human-aware autonomous navigation was presented in [6].

Most works based on proxemics, do not take into account that these social zones

often depend on the human intentions and the environment. This idea was briefly

described in [10], where authors extended the previous work [11] and suggested a

skew-normal probability density in order to model the social space.

The work proposed goes further and proposed two methods of adapting the

personal space to the environment. The first one defines a new spatial density function

that extends the previous work [1] in order to satisfy these real scenarios. A flexible

mathematical model based upon the use of a modified two-dimensional Gaussian

function [12] is proposed to dynamically model the personal space of an individual

adapting its shape to the spatial context. The second method proposed in this work is
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the definition of three spaces around the person: intimate, personal and social space;

in order to plan the path of the robot trying to according these spaces. This idea was

introduced in [6].

Regarding interactive scenarios (i.e., spaces in which people and buildings engage

in a mutual relationship) some authors define regions next to objects in which robot

navigation is forbidden. The space affordances are defined in [4] as potential activity

spaces, which are social spaces constituted by means of actions performed by humans.

A similar idea was previously introduced in [13, 14], where these areas are considered

by means of a spatial Poisson process that allows encoding the probability of human

activity events. In [15] a concept similar to space affordances is considered by taking

into account areas frequently visited in the environment. This work uses a similar

region as the introduced in [4] and updates and adapts the robot’s navigation plan

according to this information. Unlike the proposal in [4], this work defines the

forbidden region for robot navigation as polylines, which are then used to update the

free space graph and to adapt the path planned by the robot during the navigation.

When a robot plans the best path in human-populated environments, it must avoid

passing between two people talking or getting inside the field of view of the people

when they are observing a particular object. Social mapping is an interesting concept

recently introduced in the robotics community in order to manage the shared space

between humans and robots. The concept of Social mapping was introduced in [3].

It deals with the problem of human-aware robot navigation and considers factors like

human comfort, sociability, predictability, safety and naturalness [5]. More recently,

the concept of behavioral mapping has been introduced in [16], where the authors

extend social mapping to a behavioral model acting as a mediator that facilitates

seamless cooperation among the humans. In [1], the basis of this final master project, a

model of social map was proposed, defining a proxemic-based adaptive spatial density

function for clustering groups of people and define forbidden spaces.

As the number of skills robots have increases, human-robot collaboration becomes

more feasible. In [17], the requirements for effective human-robot collaboration in

8



CHAPTER 3. RELATED WORK

interactive navigation scenarios are listed. Additionally, authors present three different

human-robot collaborative planners. However, they only focus on secure navigation

and not on HRI. Other works such as [18], anticipate the human trajectory in order to

update social constraints during robot navigation. Similar works are presented in [19].

Again, authors do not take into account interaction with people for robot navigation.

Planning for HRI has been used in manipulation tasks [20] and task allocation in

collaborative industrial assembly processes. However, there are no works where

HRI has been used to improve robot navigation in crowed environment using social

conventions. The proposed work introduces a planning domain for social navigation

where HRI is crucial for solving real situations where the robot’s path is blocked due

to social limitations. The goal is for the robot to execute actions that optimize social

navigation and human satisfaction.

9



10



Chapter 4

System Overview

4.1 RoboComp

This work has been developed in Robocomp, an open-source Robotics framework that

allows an easy and fast software development. Robocomp provides the tools to create

and modify software components that communicate through public interfaces.

RoboComp is based on Ice (Internet Comunication Engine) [21]. It provides an

extension of the middleware in several aspects, such as the tool set and classes that

Robocomp facilitates. Some of these tools, such as the component generator, the

manager, the monitor or the simulator have been very helpful in this work.

The components of Robocomp are created using two domain languages: IDSL

and CDSL. With IDSL is defined the inferface of the component and with CDSL is

specified how the component will comunicate with the rest of the components. Based

on this information, the code is generated, in C++ or Python languages.

One of the main advantages of Robocomp is that the components can be

regenerated easily without the loss of the user’s code, if it is needed to change their

features.

The CORTEX Cognitive Architecture is implemented in this framework. This

architecture, which is explained bellow, is used in the social navigation algorithm in

which this work is centered.
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4.2. COGNITIVE ARCHITECTURE

4.2 Cognitive Architecture

It is important to know what is the cognitive architecture CORTEX, presented in [22],

in order to understand the proposed work.

The robotics cognitive architecture CORTEX is defined as a network of cooperative

software agents connected through a shared representation shown in Fig. 4.1.

This shared representation was defined in [22] as ”a directed multi-labelled graph

where nodes represent symbolic or geometric entities and edges represent symbolic or

geometric relationships”.

Figure 4.1: Diagram of CORTEX with the main software agents involved in this work.
The shared representation of the environment is represented in the centre.

In the proposal of a improvement for the Social Navigation algorithm, many

CORTEX agents are involved. First, in the higher layer of the architecture the robot

must have the capability of detecting objects in the path and updating the symbolic

model accordingly. Additionally, the skill of detecting and tracking humans is also

mandatory because robots need to know about humans to get commands, avoid

collisions and provide feedback. Also, a conversational agent is required in order to

interact with humans. The final, and most important agent for social navigation, is the

12



CHAPTER 4. SYSTEM OVERVIEW

one implementing the navigation algorithms that allows robots to navigate in a social

manner.

The concept of deep representations was initially described by Beetz et al. [23]

and it advocates the integrated representation of robot’s knowledge at various levels of

abstraction in a unique, articulated structure such as a graph. Based on this concept, a

shared representation, Deep State Representation (DSR), to hold the robot’s belief as

a combination of symbolic and geometric information, is proposed in [22] and used in

this work. This graph represents knowledge about the robot itself and the world around

it in a flexible way.

4.3 CORTEX Agents

An agent within CORTEX was defined in [22] as a computational entity in charge

of a well-defined functionality, whether it be reactive, deliberative of hybrid, that

interacts with other agents inside a well-defined framework, to enact a larger system.

In CORTEX, agents define the classic skills of cognitive robotics architectures, such as

navigation, manipulation, person perception, object perception, dialogue, reasoning,

planning, symbolic learning or executing. These agents operate in a goal-oriented

regime and their goals can come from outside through the agent interface, and can also

be part of the agent normal operation. Next, a description of the main software agents

involved in the social navigation algorithm is shown. This description of CORTEX and

its agents is based on the original proposal, before the applying the methods described

in this work.

4.3.1 Human detection and representation

The person detector agent is responsible of detecting and tracking people in the

environment. The presence of humans in the robot’s path or in their environment may

determine changes in the navigation route in order to make it socially acceptable.

Originally, people were included in the model through a component named

13



4.3. CORTEX AGENTS

FakeHuman. This component included the human in the symbolic model given a

person’s position and rotation. It also allowed to move the human through a interface.

At the end of this work, a real time human pose detection and tracking algorithm is

provided.

4.3.2 Human-Robot Interaction

The conversation agent performs speech-based human-robot interaction. In social

environments, HRI provides tools to the robot and/or human to communicate and

collaborate. Automatic Speech Recognition and Text-to-Speech algorithms allow

robot to send and receive information to/from humans during its social navigation.

4.3.3 Executive

The Executive is responsible for computing plans to achieve the current mission,

managing the changes made to the DSR by the agents as a result of their interaction

with the world, and monitoring the execution of the plan. Each time a structural change

is included in the model, the Executive uses the domain knowledge, the current model,

the target and the previous plan to update the current plan accordingly.

4.3.4 Social Navigation

The Social Navigation Agent is the most important in this work. It is in charge of

analyzing the environment and calculate socially acceptable routes for the robot.

The original social navigation algorithm, presented in [1], was divided in three

fundamental steps: the modelling of personal space, the grouping of individuals

and the modification of the navigation architecture to achieve a socially acceptable

navigation. An overview of current navigation framework is shown in the Fig. 4.2.
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CHAPTER 4. SYSTEM OVERVIEW

Figure 4.2: Overview of the social navigation framework

• Personal Space Modelling: The social navigation proposal presented in [1]

is based upon the use of an asymmetric two-dimensional Gaussian function

[12] to represent the personal space of an individual. The asymmetry of the

Gaussian function is used to represent the discomfort of the human when the

robot circulates around him. A mathematical description of this algorithm is

included in the annex A.1.

• Clustering of people: Once the personal space of each human has been modelled,

a global density function is used in order to separate humans into groups

accordingly to its distances. This method discriminates the group contour to

which each individual belongs in order to define forbidden regions for the

navigation. This is accomplished by using a modified version of the method

described in Viera’s work [24]. A mathematical description of this algorithm is

also included in the annex A.2.

• Path planner and optimization: Originally, the social navigation architecture

15



4.3. CORTEX AGENTS

uses the Probabilistic Road Mapping (PRM) [25] and Rapidly-exploring

Random Tree (RRT) [26] planners. These planners employs an irregular free

space graph, which represents the space free of objects in the world, in

conjunction with the inner representation of the world, called InnerModel, in

order to calculate the path for the robot. Then, a modified version of the elastic

band algorithm for path optimization [27] is used.
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Chapter 5

Methodology

The original social navigation algorithm agent was developed in order to be used in

simulated scenarios. However, real scenarios are complex, and thus, the system should

be robust and have the capability to operate in real time. Therefore, this work proposed

a series of improvements to the social navigation algorithm presented in [1], in order

to be used in real environments. Fig. 5.1 shows a block diagram of the improvements

proposed.

Figure 5.1: Block diagram of the methodology proposed
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5.1. ADAPTATION TO CHANGES IN CORTEX

This chapter is organized as follows:

First of all, the main changes that CORTEX cognitive architecture has undergone

over time, are explained. As explained in 4.2, CORTEX is the kernel of the social

navigation system used in Robolab for their autonomous robots. After this, this chapter

describes the methods and algorithms developed in this work. In first place, a method

for the detection and tracking of humans in real time is proposed. This is mandatory

for a robot social navigation in real environments. In addition,two different methods

are proposed to adapt the personal space of a human to the social environment, since

it is not the same to navigate in a wide environment than in a corridor. It is aimed at

ensuring that the personal space of human beings is not fixed, but flexible according to

the environment in which they find themselves. This work also includes the concept

of Spaces Affordances, areas in the environment in which humans tend to develop

certain interaction, as a way of adapting the environment to human activities. Finally,

a domain of planning HRI is proposed, for those situations in which the robot needs to

interact with the person.

5.1 Adaptation to changes in CORTEX

Robocomp is a robotics framework in continuous development. With the course of

time changes have been made in the cognitive architecture of the robot and it has been

necessary to adapt the social navigation algorithm presented in [1] to these changes.

The main changes that have taken place are explained below:

5.1.1 Free space graph

One of the most important changes that have been made to the robot’s architecture is

the modification of the free space graph that the robot uses for path planning.

The original graph in [1] was defined by a set of asymmetrically distributed nodes

N and edges E, G = (E,N), that described the free space. To consider the personal

space of humans, the original graph had to be modified. It was required to remove the
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edges and the nodes that crossed the personal space in order to take into account these

areas in the path planning. These forbidden areas were defined as polygonal curves

Lk, as is explained in the annex A. For removing the nodes, it was defined for each

polyline li ∈ Lk a polygon Pi = {a1, ...am}, being a j = (x,y) j the points by which the

polyline was formed. All the free space nodes Ni ∈ N contained in that polygon Pi were

removed. The edges were also removed if the edge Ei intersected with the polygon Pi.

That meant that the edge Ei crossed the polyline and it was necessary to remove it to

prevent the planned route going through this space.

The edges and nodes removal caused some issues when the people moved because

it was necessary to regenerate again the nodes and edges of the graph. This

regeneration was a very slow process. In addition, when humans were inserted into the

graph, unconnected areas appeared due to the disappearance of the nodes and edges.

When the PRM planner found unconnected areas, the RRT planner was used, which

introduced a considerable delay in the planning of the route.

(a) Previous Graph (b) Current Graph

Figure 5.2: Comparison between the current and previous free space network

Currently, the free space is represented only by a set of nodes N, G(N) regularly

distributed in the environment. When considering a free space graph whose nodes

are distributed uniformly, there is no problem of unconnected areas, so it is no longer

necessary to use the RRT planner. Each node Ni has two parameters: availability, A,

and cost, C . The availability of a node, A[Ni] indicates if the space is free or occupied;
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and the cost, C[Ni], indicates the weight of a node, i.e. what it takes for the robot to

travel between nodes. Initially, C[N] = 1, what means that all nodes have the same

cost.

To consider the personal space of humans, for each polyline li ∈ Łk, a polygon Pi

is formed with the polyline points. A[Ni] is set to occupied if the node Ni is contained

inside that polygon Pi. If the person moves, and Ni is not longer contained in Pi, A[Ni]

is set to free, unless in the initial graph G0(N), in which no persons are considered, the

node was originally occupied. In the Fig. 5.2 a comparison between the previous and

the current graph is illustrated.

As will be explained in the following section, the Dijkstra algorithm is currently

used in the path planning. This algorithm employs this novel free space graph G(N).

One of the main advantages of this type of graph is that each node, apart from

indicating whether it is occupied or free, it has a cost. It will be very useful in the

next sections, where it is explained a new method to plan a trajectory based on the

personal spaces of humans.

5.1.2 Use of Dijkstra algorithm in the path planning

Another change in Robocomp’s architecture has been the modification of the algorithm

used to plan the robot’s trajectory. As explained in the section 4.3.4, the PRM and RRT

planning algorithms were previously used in the original navigation system. The main

drawbacks of these path planning algorithms were the delay in the re-planning.

The Dijkstra algorithm is currently employed. This algorithm is used for the

determination of the shortest path between an initial position and a target to which

the robot must travel. Given a node of origin, the algorithm calculates the distance

from origin to the rest of the nodes of the free space graph, explained above, taking

into account the cost (weights) of the nodes. The cost of a path is the total of the cost

of the nodes that conform it.
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5.2 Real Time Human Detection

The first step to achieve a social navigation algorithm is the detection and tracking

of humans in the environment. In the previous work [1] this was done through a

component that allowed to insert the person in the model given its pose (i.e., position

and rotation). This was useful in simulation, however in real environments it is

necessary to detect people and track them in real time.

In real scenarios people must be detected and tracked by the sensors of the robot in

conjunction with sensors placed in the environment. One of the contributions of this

work is the insertion of people in the cognitive architecture CORTEX, acquiring the

information using a RGBD sensor. For each detected person the agent inserts in the

DSR its pose.

Figure 5.3: List of joints provided by Orbbec Astra SDK [28]

The sensor chosen for the detection and tracking of humans is the Orbbec Astra

Pro camera. It is a 3D camera, with a range of 0.6 to 8m (Optimal 0.6 - 5m), which

offers depth and RGB images with high resolution. One of the advantages of Orbbec is

that it offers an extensive set of tools in its SDK (Software Development Kit) [28]. In

Orbbec Astra SDK is integrated a Body Tracking software, which provides a detection

and tracking of people. Orbbec Body Tracking provides access to a person’s list of

joints ( i.e. the points that make up their skeleton). The software provided by Orbbec
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is capable of detecting a large number of humans in the environment, however it can

only track two skeletons at the same time. The image 5.3 shows a list of joints that

Orbbec’s software allows to obtain.

5.2.1 Multi-Modal Tracking

The software provided by Astra for the detection of a person (or a group of them)

would lead to errors in the representation and modeling of the human pose if it is used

alone in the system. This software, despite providing an appropriate detection, does not

provide a very accurate tracking. For instance, when the camera detects a person, the

body tracking software shows the joints of its skeleton, at the same time that assigns

him an identifier (id), but if this person leaves the camera range and reappears, the

software will give the person a new id.

(a) Body Tracking (b) Face Tracking

Figure 5.4: Types of tracking used for the detection of humans

In order to improve the accurate and robustness of the detection and tracking

algorithm, a mixture of different types of tracking has been used. This work uses two

different human detection and tracking algorithms: one of them is the 3D body tracking

provided by Astra. In the Fig. 5.4a can be seen graphically the joints obtained by this

algorithm. The second one is a typical 2D face detection and tracking algorithm. In

the Fig. 5.4b can be seen graphically the detection of a face using this algorithm. The
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information obtained with both of them is fused in order to estimate the pose of each

human in the environment.

The face tracking used is implemented with OpenCV (Open Source Computer

Vision Library) [29] . The face detection is done using deep learning face detector,

available in OpenCV version 3.3 or higher. As a result of the detection, the bounding

boxes of all the detected faces are obtained for each video frame. The centre of each

bounding box is calculated and an id is assigned to it. If a new bounding box appears

in the next video frame, its centre will be calculated and checked if it corresponds to

any of the people present, calculating the Euclidian distance with the centres obtained

in the previous frame. If it coincides, the id will be the one of the previous frame,

otherwise a new one will be assigned to it.

Since each tracking employed assigns an id to each person detected, it is necessary

to match the people detected in each one, in order to obtain a generic person

id. Let lbody
id =

{
idb

1 , id
b
2 , ..., id

b
n
}

be the list of identifiers associated to n different

humans detected (and tracked) by the body tracking algorithm. Besides, let l f ace
id ={

id f
1 , id

f
2 , ..., id

f
m

}
be the list of identifiers associated to m different humans detected

(and tracked) by the face tracking algorithm. Next, a matching stage between both lists

of humans is needed.

To perform the matching between the information obtained by the two tracking

algorithms, let B be the set of all the bounding boxes obtained in the face detection

(i.e., B[id f
j ] is the bounding box of the face id f

j ). For each idb
i ∈ lbody

id , and for each id f
j

∈ lid f it is checked if the pixel coordinates of the joint corresponding to the head, JH ,

is contained inside the limits of the bounding box B[id f
j ]. If it happens, it is considered

that idb
i is the same person than id f

j .

Then, the algorithm estimates human poses as explained bellow:

Position calculation

To estimate the person’s position, firstly the list of joints of its trunk is obtained,

Jtrunk = {JH ,JN ,JSS,JMS,JBS}, being H, N, SS, MS and BS the head, neck, shoulder
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spine, middle spine and the base spine, respectively. Each Ji = [x,y,z]Astra is the

3D coordinates of the joint in the camera’s reference frame. In order to obtain the

real position of the person, it is necessary to transform the position of each joint

to real world coordinates J = [x,y,z]World . For this purpose, InnerModel class from

RoboComp is used, since it provides the necessary tools to transform points to different

reference frames.

For each human hi detected in the environment, its position hi[x, z]World is

calculated as the mean of x and z positions of the trunk joints. It may happen that

some joint is not found but at least one of the joints must be found, otherwise the

human pose estimation cannot be performed. The number of joints found for each

person can be interpreted as a measure of the confidence of the data obtained for that

person.

Rotation calculation

Person’s rotation is estimate based on the positions of their shoulders. It is necessary to

obtain the joints of both shoulders ,JLS and JRS, (i.e, left shoulder and right shoulder),

to perform the calculation. Similar to the estimation of the position, the obtained

information is in the reference frame of the camera Ji = [x,y,z]Astra. InnerModel is

also used to transform the coordinates of the joints to the reference frame of the world

Ji = [x,y,z]World .
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Figure 5.5: Parameters used in the rotation calculation. The different reference frames
of Astra and World are also illustrated

The vector V that connects both shoulders is calculated as it is indicated in the eq.

5.1. Since the y-coordinate in the world represents height, only x and z are used for the

calculation of V , being Vi = [x,z]World . The rotation of the Z-axis is the tangent arc

of the division of the Y -position of the vector V by its X-position, as it is show in eq.

5.2. In the Fig. 5.5 the parameters used for the rotation calculation and the different

reference frames are graphically represented.

V =VLS−VRS (5.1)

Rz = arctan
Vy

Vx
(5.2)

After calculating the position and rotation of a person, this information is included

in the internal model of the robot (i.e., DSR), in order that its information can be used

by other agents of the architecture.

Once a reliable detection and tracking has been achieved, the aim is to improve the

current navigation algorithm, turning it into an algorithm in which the personal space
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of humans can be adapted to the environment. The improvements proposed to achieve

this objective are explained in the following sections.

5.3 Space Affordances

In real-life scenarios, human often interact with objects in the environment. The robot

should be able to detect these situations and behave in a social way, avoiding interfering

in the interaction.

The concept of Space Affordances refers to areas where humans usually perform

particular activities [4]. In interactive scenarios, these spaces are related to objects

with which humans often interact, for example, the space near a poster or a coffee

machine. These space affordances are called activity spaces when humans interact

with objects. In this work, the space affordances has been defined as trapezoidal spaces

around objects, which are considered forbidden for navigation when humans interact

with the objects.

Let On = {o1, ...,on} be the set of objects with which humans usually interact in the

environment, where n is the number of objects detected by the corresponding agent. It

is assumed that these objects are detected by the robot’s perception system [30]. Each

object oi stores the interaction space ioi as an attribute, which is associated to the space

required to interact with this object, and also its pose poi = (x,y,θi),

oi = (poi, ioi)

Different objects in the environments have different interaction spaces, for instance, to

use a coffee machine it is needed less space than the needed to read a poster, because

it can be done from a farther distance. Next, the space affordance Aoi is defined for

each object oi ∈ O. In this work, the shape of these spaces has been modeled as an

symmetrical trapezoid with height ah and widths (aw1, aw2), as is shown in Fig. 5.6,

being aw2 = (aw1 · ah) / 4.
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Figure 5.6: Space Affordance Modeling: The Space affordance of an interactive object
is modeled by a symmetrical trapezoid.

Once the space affordance Aoi is created, it is checked if is being used as an activity

space, what means that the person is interacting with the object. Two conditions have to

be fulfilled to consider that an activity is being carried out: the person hi has to be inside

the space affordance and has to be looking at the object oi. The space will be forbidden

for navigation if these conditions are true. Similar to the personal space described in

the annex A, Aoi is also modeled by a polyline that is described by four vertices va

that will be used to delimit forbidden areas for navigation. Finally, Lo = {Ao1, ...,Aon}

describes the set of polylines used by the navigation algorithm for defining forbidden

navigation areas.

In Fig. 5.7a four humans in different positions and four objects are shown (a coffee

machine, a fridge, a phone, and a pin board). Some of the humans are interacting

with the objects. The position of the humans, the objects and the shapes of the spaces

created for these objects are shown in Fig. 5.7b. The vertices va are shown in green

if the space is being considered as free. These vertices are in green even if the person

is inside the space but is not looking at the object. If va is shown in red means that

the person is inside the space affordance and looking at the object (i.e, the person

is interacting with the object), so the space is being used as an activity space and,

therefore, considered as occupied.
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(a) Humans interacting with different objects (b) Spaces Affordances generated

Figure 5.7: Example of Spaces Affordances in a simulation with humans and four
objects

5.4 Personal Space adapted to the Spatial Context

The proxemics in robotics, the basis of the previous work [1], has been studied mainly

in large environments, where there are no obstacles in the vicinity of humans. In real

situations, it is not the same to navigate in a hall than to do it in a corridor with humans.

The robot should be able to adapt their personal space according to the dimensions of

the available space. This could be done since there is some flexibility in the comfort

space reserved for the human.

This section presents the evolution that research has undergone with the aim

of achieving a navigation algorithm adapted to the social environment. In this

end-of-master work, two methods are proposed to adapt the human space to the

environment:

5.4.1 Environment-dependent personal space modeling

The first proposed method evaluates distances from the position of the human hi =

(xh,yh,θh) to the walls of the room in four different orientations θi = (0,π/2,π,3π/2)

being θi = 0 the orientation of the person. Then, for each direction, the algorithm

evaluates if the robot is able to navigate in this space. If not, the personal space,

28



CHAPTER 5. METHODOLOGY

explained mathematically in the annex A, is adapted by varying the corresponding

variance of the asymmetric Gaussian function σ (i.e., σs, σh and/or σr). This algorithm

is detailed next:

Calculation of the distance to walls

If a human hi is inside a room or a corridor, the algorithm evaluates the distance from

human position to walls. First, Let Ri = {ω1,ω2, ...ωn} be the room where person hi

is located, being ωk the wall k that composes the complete room (e.g., a corridor has a

minimum of two walls, while on the contrary in a typical room there are four different

walls). Each wall ωk is described by a plane pωk ∈ R3.

In order to measure distances to each wall, the proposed algorithm generates two

different straight lines, S1 and S2, being S j defined as S j = (ρ,α) j, where ρ is the

length of the normal drawn from the origin (i.e., robot) to the line, which subtend an

angle α with the positive direction of x-axis.

In Fig. 5.8a is shown a human located in a room R composed of four walls

R1 = {ω1,ω2,ω3,ω4} and where S1 = (ρ,α)1 is also drawn. Next, intersection point

between S1 (and S2) and the plane pωk define the distance dk from the human position

to ωk. In Fig. 5.8a four different distances are shown: line S1 defines two different

distances, d1 and d3, while S2 defines the distances d2 and d4 (intersection between S2

and walls ω2 and ω4, respectively). The set of all the distances from human to walls

defines the distance vector dT .
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(a) Intersection between the walls and the lines

S1 and S2.

(b) Distances used in the proposed work.

Figure 5.8: Description of the method for measuring distances between human and
walls

Evaluation of the spatial context

Once the distance vector dT has been calculated, the next step is to evaluate if the

personal space must adapt its shape to the spatial context. Let dr be the diameter of the

robot plus a safety margin. Besides, let dmin and dmax be the minimum and maximum

distances that define the comfort zone, respectively. These values are presented in 5.8b

as circumferences with center hi(x,y) and radius dmin and dmax. For each di ∈ dT , the

proposed method calculates the distance ds:

dsi = di−dr (5.3)

Considering different values of dsi:

• If dmin ≤ dsi ≤ dmax: It is possible to adjust the comfort area in order to allows

robot navigation.

• If dsi ≤ dmin: The robot is unable to navigate in this orientation, since the

personal space can not be adjusted.

• If dsi ≥ dmax: There is no need to modify the shape of the personal space.
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In Fig. 5.9, the new Gaussian is presented after consider the spatial context of

the human-robot interaction. In the figure, ds2 and ds3 involve a modification of the

personal space in the scenario presented.

Figure 5.9: Evaluation and adaptation of the spatial context in a typical narrow corridor

Environment-dependent personal space

In this stage the personal space model is adapted to the spatial-context. As was

described in the appendix A, the model used in [1] is an asymmetric Gaussian ghi(x,y)

defined by σs, σh and σr. By varying some of these values, ghi(x,y) adapts its shape

to the environment. Let g′hi
(x,y) be the new model, where now σ ′s, σ ′h and σ ′r are

dependent of the spatial context. This dependence is modeled as non-linear regression

σ ′ = a · ds
b, being a and b parameters that define the shape of the curve and the

magnitude of the σ ′ value.

The a and b parameters have been chosen as the coefficient that better fit the data

to the curve giving by the expression σ ′ = a · db
s . A set of σ values are used in order

to get the corresponding contours of the asymmetric gaussian gh(x,y). By fixing the

density threshold, φ , of the cost function, these contours define different distances as

is shown in Fig. 5.10. From these data, a = 1.2 and b =−0.976, where R2 = 0,97.
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Figure 5.10: Regression used to model the dependence between sigma and the distance
to the sides, back and front.

Finally, this personal space describes a region where robots’ navigation is

forbidden, such was described in [1].

5.4.2 Path planning dependent on Personal Space

The second method proposed to adapt the personal space of a human hi to the

environment consists of defining three spaces around the person (intimate, personal and

social space) and planning the robot’s trajectory on the basis of these spaces, modifying

the costs of the nodes of the free space graph. This algorithm is detailed next:

Definition of different personal spaces

The original navigation algorithm employs an asymmetric Gaussian function to

establish the personal space of an individual hi. This algorithm establishes a fixed

density threshold φ , which defines how close to human the prohibited boundary J will

be for navigation, in order to make the robot respect the human’s personal space. The

contour J delimits how near the person the robot can navigate. In Fig. 5.11 are shown

several 2D views of the representation of the Gaussian curve generated for a human

looking to the right. If the personal space of the human is understood as a ”cut” in

the Gaussian curve in function of the density threshold φ , it can be observed how the
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personal space would be modified in function of this one, being the personal space

bigger the lower the threshold.

Figure 5.11: 2D representation of the upper and lateral views of the asymmetric
Gaussian curve generated for a person looking to the right. The different dimensions
that the contour J would have in function of φ are shown.

In view of the foregoing, this method proposes the variation of the density threshold

φ for the definition of not one, but three contours Ji of different sizes around the person,

each one defined by the same asymmetric gaussian curve ghi(x,y), explained in the

annex A.

Each human hi present in the environment will have three associated spaces: the

intimate space, delimited by the contour Jintimate; the personal space, delimited by

Jpersonal; and the social space, delimited by Jsocial , each of them being larger than the

previous one, as it was introduced in [6]. The Gaussian curve ghi(x,y) that generate

these contours is defined with the same variance σ as it was done in [1] (i.e σh = 2, σr

= 1 and σs = 4/3).

According to [6] it is possible to classify the space around a person into four zones,

depending on social interaction. This distances to the human are listed bellow:

• Public zone > 3.6 m

• Social zone> 1.2 m

• Persona zone > 0.45 m

• Intimate zone <= 0.45 m
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Considering the previous data, the distances Dh,Ds,Dr have been evaluated for

each value of φ . These values are the distances from the person to the contour J in

the front direction Dh, side direction, Ds, and rear direction, Dr. The goal is to find a

suitable φ that provides a value of Dh similar to the proposed by [6].

Table 5.1: Variation of the distance from the person to the forbidden contour for
navigation J, depending on the density threshold φ

φ Dh (m) Ds (m) Dr (m)

0,1 2,1 1,6 1

0,2 1,7 1,3 0,8

0,3 1,5 1,1 0,7

0,4 1,3 1 0,6

0,5 1,1 0,8 0,5

0,6 1 0,7 0,5

0,7 0,8 0,6 0,4

0,8 0,6 0,5 0,3

0,9 0,4 0,3 0,2

For the selection of φ only the distance Dh has been considered. The chosen values

have been φ = 0.1 for the social space; φ = 0.4 for the personal space (which is same

value used in [1] to generate the personal space) and φ = 0.8 for the intimate space.

The three Ji contours obtained are defined, as it was done in [1] by a set of k

polygonal chain (i.e., polyline) Lk = {l1, ..., lk}, where k is the number of regions

detected by the algorithm. The curve li is described as li= {a1, ...,am}, being a j =

(x,y) j the vertices of the curve, which are located in the contour of the region Ji. In

this way, each person hi will have three polylines associated Li
intimate, Li

personal and

Li
social . In the Fig. 5.12 are shown these polygonal curves: in color red is represented

the intimate space, in purple the personal one and in color blue the social space.

Modification of the free space graph costs

As it was introduced in section 5.1.1 the current free space graph is represented by a

set of nodes, N considered free or occupied depending on its availability A[Ni]. These

nodes also have a parameter that represent its cost C[Ni]. The robot plans the shortest

path between the points of the graph using the Dijkstra algorithm and taking into
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account the cost of each node: the path is considered ”longer” when the cost of the

nodes are higher. The road is not physically longer, however can be interpreted as if it

is. Initially, all the nodes of the graph have C[Ni] = 1.

Figure 5.12: Definition of three spaces of interaction around the person and
modification of the costs of the graph to take into account these spaces

Being A the matrix formed by the availability of each node and C the matrix formed

by the costs and considering the set of polygonal curves defined bellow, Lk
intimate,

Lk
personal and Lk

social , this method consist on modify the cost and availability of the

nodes of the graph according to these interaction spaces.

In first place, considering only the intimate space around the person hi, for each

polyline lintimate
i is defined a polygon Pintimate

i formed by the points of the polyline. The

availability A[Ni] of all the nodes Ni ∈ N contained in the space formed by Pintimate
o is

set to occupied, A[Ni] = occupied. This means that the robot will not be able to invade

this space, as it would be too annoying for the person. For personal and social spaces,

the availability of the nodes of the graph will not be modified, but its cost will be

changed.

Considering the personal space around the human hi, in the same way that has

been done for the intimate space, for each polyline lpersonal
i a polygon Ppersonal

i has

been defined. The cost C[Ni] of all the nodes Ni ∈ N, contained in the space formed

by Ppersonal
p will be modified and set to C[Ni] = 4.0. In the same manner, for the social

space, a polygon Psocial
p is defined for each polyline lpersonal

i . All the nodes Ni ∈ N

contained in the space formed by Psocial
i will have cost C[Ni] = 2.0. The public space

will be the rest of the graph whose costs remain unchanged.
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Therefore, the intimate space has been set to occupied, in order that the robot never

crosses this area. The personal and the social spaces are set as free, but its costs have

been increased, giving the personal space a higher cost than the social space. In this

way, when the robot plans the shortest path, it will move away from the person. The

social and personal spaces are not considered occupied so if the robot does not have

enough space to navigate, for example in a corridor, it won’t be blocked, but it will

navigate through the social space, even if its cost is higher. If still does not have space,

it will cross the personal space, but it will never cross the intimate one.

This same technique has been used for space affordances described in the section

5.3. Being Lo = {Ao1 , ...,Aon} the set of polylines that describe the defined Space

affordances, for each Aoi the polygon Pa f f
i is formed. The nodes of the free space

graph Ni ∈ N contained in Pa f f
i are modified in order to set its cost to C[Ni] = 1.5. In

this way, the spaces affordances have less weight in the graph than the social space of

the person, so if the robot have to go through one of them, it will go through the space

affordance.

In addition, the definition of three spaces of interaction around a person can be very

useful when establishing interactions between human and robot, as will be explained

in the next section.

5.5 Planning Human-Robot interaction

Once a personal space adapted to the social environment has been achieved, the last

stage is the definition of the action domain that the navigation agent must have, in order

to elaborate social plans in environments with humans.

Planning human-aware navigation tasks entails defining the elements of the

planning problem: an initial world model, a mission, and a set of actions (i.e., the

planning domain). In CORTEX, planning is performed with the symbolic information

in the DSR, using the nodes of the representation as symbols and the edges of the graph

as predicates.

In this section the symbols and predicates (nodes and edges used in the DSR) that

36



CHAPTER 5. METHODOLOGY

are used in order to plan HRI for social navigation are described:

5.5.1 Symbols and predicates

For social navigation purposes, the robot uses three types of symbols: human, robot,

and room. This work considers cases in which a robot is found in the model, and also

the existence of several humans and rooms is possible.

The robot and each person must be located within an existing room; for this purpose

in predicate (edge in the DSR) is used. Robots and humans might be paying attention to

other robots and humans; for this purpose interact predicate is used. To represent that

a robot is close enough to establish social interaction with a human the robot includes

reach predicates.

For the definition of the action domain for HRI, different edges have been added to

the DSR, from which the robot will have knowledge of the situation that is occurring

at each moment. Initially, only three edges are considered, these are:

• block edges: Humans might block the path of the robot. If a person is physically

blocking the robot, these edges are added between the person and the robot.

When there is a block edge, the robot must launch an interaction with the person

and ask for its collaboration to pass.

• softBlock edges: These edges are used when the robot can navigate around a

person, but its path would get too close to the person, going through its personal

spaces. These edges are also used when a a social block exists (i.e., robots are

not supposed to interfere visually when two people interact). When the softblock

edge exists, the robot must launch an interaction with the person, or group of

person, and ask permission to pass .

• affordancesBlock edges: If the robot cannot navigate because the person is

interacting with an object in a Space affordance, the edge affordanceBlock is

added between the person and the robot. When the edge exists, in the same way
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as with softblock edges, the robot must launch an interaction with the person and

ask permission to pass.

Below is described when these links are added to the DSR:

Block edges

As explained above, these edges are added between a person and the robot, when the

person blocks the robot’s path. The problem appears at the time of identifying if it is

a person who is blocking the path, or if on the contrary the robot cannot navigate for

other reasons. In addition, if there are more people in the environment, it is necessary

to identify the person whose personal space is the one that is blocking the robot’s path.

In the Fig. 5.13 an example of a person blocking the robot is shown, as well as the

DSR graph with the block edge between the person and the robot.

(a) Humans blocking

the robot in a narrow

corridor

(b) DSR graph showing the block edge

Figure 5.13: Block Edge example

Given a target Nt , the robot plans the shorter trajectory T = N1,N2, ...,Nt using
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the Dijkstra algorithm, being Ni the nodes of the graph which forms the shortest path.

When planning the path, it can happen that the robot does not find any way to reach its

target. It there are humans in the environment, the intimate space of these, delimited

by the polylines Lintimate
k , can be the cause of not finding a path (as explained in section

5.4.2, the intimate space of each person is considered forbidden for navigation).

To check if it is a human that blocks the path, first it is considered a free space graph

G0(N) with no humans in the environment. If when planning a trajectory T using the

G0(N) graph no path is found, it means that humans are not the cause of the robot’s

blocking. If, on the other hand, a path is found, it is checked which human blocks the

path of the robot.

Being Lintimate
k the list of k intimate regions detected and H the set of humans in the

environment, each lintimate
i ∈ Lintimate

k is inserted, one by one, in the free space graph,

as explained in section 5.1.1, in different iterations M. In each iteration Mi the path

T is calculated again. If in the iteration Mi no trajectory is obtained, it means that

the last inserted polyline lintimate
i is the one that blocks the path. Next, it is verified

which human hi ∈ H is the owner of the polyline lintimate
i that blocks the robot. If the

position of the human hi is contained in the space formed by the polygon Pintimate
p (i.e,

polygon formed by the points of the polyline), the block edge must be added between

that human and the robot. If there are two people within this space (i.e., the two persons

block the robot by maintaining an interaction), the block edge is added between each

persons and the robot.

SoftBlock edges

It may happen that the robot finds a path, but it gets too close to a person. In addition,

humans in the environment can also socially block the robot. If this happens the edge

(softBlock) is added between the person and the robot. The robot should approach the

person and launch an interaction to ask permission to pass through that space. In the

Fig. 5.14 an example of a person whose personal space the robot needs to cross to

reach its target (i.e., the person is ”softblocking” the path of the robot), as well as the
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DSR graph with the softblock edge between the person and the robot.

(a) Human

”softblocking” the

robot’s path

(b) softblock edge added between the person

and the robot

Figure 5.14: SoftBlock Edge example

Being Lpersonal
k the list of k personal regions detected, for each lpersonal

i ∈ Lpersonal
k is

checked if the planned trajectory T crosses this space. To do this, the polygon Ppersonal
p

is formed. For each Ni ∈ T it is checked if N : i is contained in the space formed by the

polygon Ppersonal
p . If this happens, the robot needs to cross the personal space of the

person, defined by lpersonal
i . Then, for each hi ∈ H is checked if its position hi = (x,y)

is contained in the same polygon Ppersonal
p . Once the person whose personal space the

robot needs to cross is found, the edge (softBlock) is added between this and the robot.

AffordancesBlock edge

When a person is interacting with an object, the Space Affordance defined for that

object is called an Activity Space. If the robot needs to cross an Activity space, the

edge affordanceBlock is added between the person and the robot. When the edge exists,
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in the same way as with softblock edges, the robot must launch an interaction with the

person and ask permission to pass. In the Fig. 5.15 an example of a person interacting

with an object in a space affordance is shown, as well as the DSR graph with the

affordancesBlock edge between the person inside the affordance and the robot.

(a) Person interacting with a pin board (b) affordancesBlock edge added at the DSR

between the person and the robot

Figure 5.15: AffordancesBlock Edge example

Let Lo = {Ao1, ...,Aon} be the set of polylines that describe the defined Space

affordances, for each Aoi is checked if the planned trajectory T crosses this space.

To do this a polygon Pa f f , is defined . For each Ni ∈ T is it checked if this node is

contained in the space formed for the polygon Pa f f . If this happens, the robot needs

to cross the space when it is considered as an Activity Space. Then, for each hi ∈ H

is checked if its position is contained in the polygon Pa f f . Once found the person, the

edge (affordancesBlock) is added between the person and the robot.

5.5.2 Navigation domain

Although the robot’s navigation domain is composed of a large number of actions, in

this section are described the most relevant actions for a Human-Robot interaction.

These are engageHuman, askForPermissionToPass, and askForCollaborationToPass,

which will be explained below:
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engageHuman

(a) Current DSR (b) Desired DSR graph

Figure 5.16: Action engage

The first step to ask for help or permission when navigating is engaging human

interaction. This goal is the purpose of the engageHuman action. The action states that

if a human is reachable, the robot can interact with him unless its symbol is marked as

busy (which is done when a human explicitly says that she or he does not want to be

disturbed). The effect of the correct execution of the action is two new interact edges,

one from the human to the robot and vice versa. In Fig. 5.16 this action is graphically

represented. Fig.5.16b shows the DSR graph desired for the action, i.e, an interact

edge between the person and the robot.

askForPermissionToPass

(a) Current DSR graph (b) Desired DSR graph

Figure 5.17: Action askForPermissionToPass

Once the robot is interacting with a particular human, it can ask for permission to

pass in the case it needs to cross a determinate space. The precondition for the robot

to be able to execute the askForPermissionToPass action would be the existence of a
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softblock edge or affordancesBlock edge. The result of the successful execution of

the action is that the human gives permission to the robot to pass through a certain

space (i.e. his personal space in case that a softBlock edge exists, or go through the

Space Affordance if the edge is affordancesBlock). In Fig.5.17 the action is represented

graphically. Fig.5.17a shows the pre-contion to the action: the existence of a softBlock

edge; and Fig. 5.17b shows the desired DSR graph for the realization of the action: an

interact edge between the person and the robot.

askForCollaboration

(a) Current DSR graph (b) Desired DSR graph

Figure 5.18: Action askForCollaboration.

The action askForCollaboration is similar to askForPermission. The difference is that

in this case the human blocks the path physically. The block edge is added between

the person and the robot. Therefore, in this case the robot asks the human to move

and waits. In Fig.5.18 a visual definition of the action is shown. Fig.5.18a shows the

pre-condition for the action: the existence of a block edge; and in Fig. 5.18b shows

the desired DSR graph for the realization of the action: an interact edge between the

person and the robot.

An example of the HRI planning is shown in Fig. 5.19: the social robot (labeled

as ’1’) has an approach behavior with which it can initiate conversation with people

(labeled as ’2’). As the path is blocked, the robot asks for cooperation (labeled as ’3’).

Once the path is free, the social robot navigates until its target (labeled as ’4’). A zoom

of this test in ’2’ and ’3’ robot position is drawn on the right, where the changes in the

graph of free space are illustrated.
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Figure 5.19: An example of the HRI planning described in this work: ask for
collaboration.
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Chapter 6

Results

The goal of this work was to advance in the area of social navigation, by improving

the social navigation algorithm presented in [1]. In section 5, the set of proposed

improvements have been widely presented. These include the idea of a navigation

algorithm that adapts the personal space of humans to the environment, the inclusion

of interactive spaces and the proposal for a human-robot interaction planning domain.

In this section several experiments have been carried out to check the efficiency of the

improvements proposed.

Firstly, the metric used in this work is introduced:

6.1 Metrics employed

The methodology of the different experiments carried out has been evaluated

accordingly to these metrics: average minimum distance to a human during navigation,

dmin; distance travelled, dt ; navigation time, τ; cumulative heading changes, CHC; and

personal space intrusions, Psi. These metrics have been already established by the

scientific community ([15, 31]). A brief description of these metrics are described as

follows:

• Average distance to the closest human during navigation: A measure of the

average distance from the robot pose, xr(x,y,θ), to the closest human hi(x,y,θ)
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along the robot’s path P =
{

x j
r(x,y,θ) | j = 1,2...N

}
, being N the number of

points of the trajectory.

dmin = mini
{
‖xr

j(x,y)−hi(x,y)‖
}

(6.1)

• Distance travelled: length of the robot’s path, in meters.

dt =
j=N−1

∑
j=1
‖x j

r(x,y)− x j+1
r (x,y)‖ (6.2)

• Navigation time: time since the robot starts the navigation, τini, until it arrives to

the target, τend .

τ = τend− τini (6.3)

• Cumulative heading changes: a measure to count the cumulative heading

changes of the robot during navigation [31]. Angles are then normalized between

−π and π .

CHC =
1
N

j=N−1

∑
j=1
‖x j

r(θ)− x j+1
r (θ)‖ (6.4)

• Personal space intrusions (Psi): In this work, four different interaction areas are

defined: Intimate (‖x j
r(x,y)−hi(x,y)‖ ≤ 0.45m); Personal (0.45m≤ ‖x j

r(x,y)−

hi(x,y)‖ ≤ 1.2m); Social (1.2m ≤ ‖x j
r(x,y)− hi(x,y)‖ ≤ 3.6m); and Public

(‖x j
r(x,y)− hi(x,y)‖ ≥ 3.6m). Along the robot’s path, this metric measures the

percentage of the time spent in each area as:

Psi =

{
1
N

i=N

∑
i=1

F‖x j
r(x,y)−hi(x,y)‖ ≤ δ

k

}
(6.5)

where δ k defines the distance range for classification (intimate, personal, social and

public), and F () is the indicator function.

46



CHAPTER 6. RESULTS

6.2 Evaluation of the methods for adapting personal

space to the environment

Two algorithms have been proposed to adapt the personal space of a human the spatial

context. In this section both algorithms have been evaluated in order to compare them.

A description of the tests carried out to check the performance of each algorithm is

given below.

The algorithms have been developed in Python and C++ software and the

benchmark tests have been performed on a PC with processor Intel Core i5 2.4GHz

with 4Gb of DDR3 RAM and GNU-Linux Ubuntu 16.10.

6.2.1 Environment-dependent personal space modeling

evaluation

In order to evaluate the method, firstly a basic simulated scenario has been created.

This consists of a square room without objects, with dimensions 5m× 5m and the

presence of a human. This room has mobile walls, in that way it is possible to reduce

the distances from the human to each wall. Fig. 6.1 shows the results of the proposed

algorithm for adapting the personal space to the spatial context.

In Fig. 6.1a, four different tests are illustrated, where the distance to the wall in

front of the person is increased (from left to the right). The contour map of the personal

space is shown in the figure, where is drawn as the gaussian function g′h(x,y) adapted

correctly to the context. Similar results are illustrated in Fig. 6.1b and Fig. 6.1c,

where the distance to the wall has been varied in the sides of the person and in the

rear, respectively. For the results evaluation, a comparison between the original cost

function gh(x,y) and the adapted function g′h(x,y) is shown in the tables 6.1,6.2 and

6.3. In this tables is also indicated if the robot crosses between the human and the

wall. Depending of the value of d f ree, the robot will be able to cross or not this space.

If d f ree ≤ dr the robot won’t be able to do it. As is shown in Table 6.1, the flexible

spatial density function g′h(x,y) adapts correctly to the spatial context.
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It should be highlighted that dr = 0,8. In addition, dmin and dmax are not the same in

the heading than in the sides or in the rear of the person, being this values the following:

• Heading: dmin = 0,6m, dmax = 1,3m

• Sides: dmin = 0,3m, dmax = 0,6m

• Rear: dmin = 0,5m, dmax = 1m

(a) Adapting σh

(b) Adapting σs

(c) Adapting σr

Figure 6.1: Four different tests were conducted for each σh, σs and σr. Tests consist of
varying the distance from human to the corresponding wall. Distances (in meters) are
drawn in the figure.
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Table 6.1: Comparative results of the cost function defined in [1] and the proposed in
this work, by varying the distance to the wall in front of the person.

Heading

gh(x,y) g’h(x,y)

d3 ds d f ree cross? d3 d′s d f ree σ ′h cross?

2,5 1,3 1,2 YES 2,5 1,3 1,2 1,00 YES

2,05 1,3 0,75 NO 2,05 1,2 0,85 1,05 YES

1,95 1,3 0,65 NO 1,95 1,1 0,85 1,10 YES

1,85 1,3 0,55 NO 1,85 1 0,85 1,21 YES

1,75 1,3 0,45 NO 1,75 0,9 0,85 1,34 YES

1,65 1,3 0,35 NO 1,65 0,8 0,85 1,50 YES

1,55 1,3 0,25 NO 1,55 0,7 0,85 1,71 YES

1,45 1,3 0,15 NO 1,45 0,6 0,85 1,99 YES

1,35 1,3 0,05 NO 1,35 1,3** - 1,00 NO

Table 6.2: Comparative results of the cost functions by varying the distance to the wall
to the right of the person.

Sides

gh(x,y) g’h(x,y)

d1 ds d f ree cross? d1 d′s d f ree σ ′s cross?

1,9 1,0 0,9 YES 1,9 1 0,9 1,33 YES

1,8 1,0 0,8 NO 1,8 0,95 0,85 1,05 YES

1,7 1,0 0,7 NO 1,7 0,85 0,85 1,41 YES

1,6 1,0 0,6 NO 1,6 0,75 0,85 1,60 YES

1,5 1,0 0,5 NO 1,5 0,65 0,85 1,84 YES

1,4 1,0 0,4 NO 1,4 0,55 0,85 2,16 YES

1,3 1,0 0,3 NO 1,3 1** - 1,33 NO

Table 6.3: Comparative results of the cost functions by varying the distance to the wall
to the rear of the person.

Rear

gh(x,y) g’h(x,y)

d2 ds d f ree cross? d2 d′s d f ree σr’ cross?

1,5 0,6 0,9 YES 1,5 0,85 0,65 2,00 YES

1,4 0,6 0,8 NO 1,4 0,55 0,85 1,05 YES

1,3 0,6 0,7 NO 1,3 0,45 0,85 2,63 YES

1,2 0,6 0,6 NO 1,2 0,35 0,85 3,36 YES

1,1 0,6 0,5 NO 1,1 0,6** - 2,00 NO

Those results marked with two asterisks (**) indicate that the distance ds < dmin.In
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these cases the Gaussian curve has not changed and the original σ values have been

used.

From the results shown in the tables 6.1, 6.2 and 6.3, it can be concluded that

adapting personal space to the environment produces better navigation. In comparison

with the results obtained for a fixed person space, gh(x,y), adapting the personal space

ensures that the robot is not blocked in reduced environments. For example, with a

fixed personal space gh(x,y) the robot cannot navigate when the person is 2.05 m from

the wall facing it. However, by adapting the personal space g′h(x,y) the robot can

circulate in the previous case even if the person is less than 1.5m from the wall.

With this algorithm the robot always tries to reach its destination, getting close to

the person whenever it can. Although this algorithm provides social navigation even

in reduced spaces, the robot can get quite close to the person, which can be annoying.

6.2.2 Path planning dependant on Personal Space Evaluation

(a) 2m wide (b) 3m wide (c) 4m wide

Figure 6.2: Scenarios used in the second experiment

To evaluate the performance of the second proposed algorithm to adapt the personal

space to the spatial context, several simulations have been performed in three different

spaces. The widths of the rooms used were 2, 3 and 4 m, while the height of the rooms
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was constant, 10 m. In Fig. A.1 the used scenarios can be seen. A simulated version of

the robot Viriato has been used. Viriato has had to navigate from the position x = 0m,

y = 0m to x = 8.5m, y = 0m, through those scenarios in which a person was located

in random positions. The aim of the experiment is to measure the percentage of time

(i.e. the personal space intrusions, Psi) that the robot spends in each interaction space

defined for the person, as explained in the section 5.4.2. The ”softblock” produced

when the robot has to cross the personal space of a human has not been considered

for this experiment, so the robot will pass through that space without launching the

interaction with the human in first place, as explained in the section 5.5.

The results obtained for the simulations of rooms 2, 3 and 4 meters wide can be

found in the tables 6.4, 6.5 and 6.6, respectively.

Table 6.4: Navigation results for 2m wide room considering interaction spaces

Parameter Obtained value (σ )

dt (m) 9.71 (0.56)

τ(s) 40.39 (11.83)

CHC 1.49 (0.58)

dmin Person (m) 1.13 (0.16)

Ψ (Intimate) (%) 0.0 (0.0)

Ψ (Personal) (%) 4.43 (7.38)

Ψ (Social) (%) 16.46 (11.46)

Ψ (Public) (%) 79.10 (13.92)

Table 6.5: Navigation results for 3m wide room considering interaction spaces

Parameter Obtained value (σ )

dt (m) 10.02 (0.49)

τ(s) 31.39 (3.64)

CHC 0.88 (0.18)

dmin Person (m) 1.62 (0.28)

Ψ (Intimate) (%) 0.0 (0.0)

Ψ (Personal) (%) 0.0 (0.0)

Ψ (Social) (%) 3.29 (5.41)

Ψ (Public) (%) 96.70 (5.41)
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Table 6.6: Navigation results for 4m wide room considering interaction spaces

Parameter Obtained value (σ )

dt (m) 10.81 (0.55)
τ(s) 45.65 (19.24)

CHC 1.27 (0.51)

dmin Person (m) 1.76 (0.18)

Ψ (Intimate) (%) 0.0 (0.0)
Ψ (Personal) (%) 0.0 (0.0)

Ψ (Social) (%) 2.017 ( 3.37)
Ψ (Public) (%) 97.98 (3.37)

As can be seen in the results obtained in tables 6.4, 6.5 and 6.6, the robot is capable

of avoiding human interaction spaces in planning. The robot tries to avoid the different

interaction spaces defined for the person. For environments more than 2m wide, the

robot does not invade the person’s personal space, as Ψ (Personal) is equal to 0.0 . It

does this without deforming the human space. The main difference with the previous

algorithm is that with this one, the robot is always as far away from the person as

possible. However, the smaller the room, the more difficult it becomes. For instance,

for the 2m wide room, the robot must pass through the human’s personal space, as can

be seen in Fig. 6.2a. As already explained, this can be annoying for the person. In

this case, the Human-Robot interaction would be launched, so that the robot could ask

for permission beforehand. The advantage of this algorithm is that used in conjunction

with Human-Robot interactions, provides a much more acceptable social navigation,

interacting with people only when necessary and without deforming their personal

space, getting closer than a person could desire.

Regarding the other metrics used, it can be noted that the values of τ , dt and CHC

are quite high. This is due to the presence of humans, which makes the robot’s path

longer. In a non-social robot navigation it is desired these values to be as low as

possible. However, since there are humans in the environment, a compromise appears

between them and the comfort of the human being, the latter being the priority.

It should also be noted that the variance of the results obtained is quite high. This

is due to the fact that the experiments were carried out in random positions of the

person, with the aim of measuring the personal space intrusion, Ψ; therefore the same
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navigation results are not obtained for each of the simulations performed.

6.2.3 Comparison of proposed methods for adapting personal

space to the environment

Two different methods of adapting personal space to the environment have been

presented. Although both of them have shown positive results for the social navigation

of the robot, they are very different from each other and each has its advantages and

disadvantages. Below, a comparison between both is shown.

• When considering a deformable personal space around the person (first proposed

method), the robot will try to adapt the human space in the first place, so it won’t

have to bother the person if it doesn’t have enough space to pass through.

• This algorithm provides social navigation, without invading personal space and

without the need to launch HRI interactions in reduced environments.

• The main disadvantage of this algorithm is that the robot is always going to try

to reach its destination, even though this means getting very close to the person.

• Deforming a person’s space is not always pleasant for that person, so it would be

more logical to establish certain spaces that the robot tries to avoid and, if unable

to do so, launch an interaction with the person when possible.

• In addition, the first algorithm presents the difficulty of previously having to

know the positions of the walls, so this information must first be entered into the

symbolic model of the robot.

• By introducing interaction spaces around the person (second proposed method),

there are more possibilities for action, such as checking whether the robot needs

to go through one of these spaces and act accordingly.

• The second algorithm proposed has the advantage that the robot always tries to

navigate as far away from the person as possible.
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• The use of this algorithm in conjunction with human-robot interactions provides

a much more appropriate social navigation. The robot will respect interaction

spaces when possible and, unable to do so, it will launch an interaction with the

person to ask permission or collaboration to pass.

For these reasons, the second proposed method has been used for the development

of the rest of work, as it can be more useful. It can be concluded that this second

method is effective for rooms more than 2 meters wide. Although the first method

proposed allowed navigation in smaller environments, as mentioned above, deforming

the person’s space is not pleasant for the person. In addition, it is preferable to get as

far away from the person as possible and ask permission when it is necessary to get

close.

6.3 Navigation in interactive scenarios with Space

Affordances

To test the performance of the space affordances algorithm, a rectangular simulated

environment with a whiteboard on it has been used. It has been considered an

experiment in which the robot’s trajectory is not blocked by the space affordance.

The simulated environment is shown in Fig. 6.3a. The object has been placed in

the position x = 2m, y = 4.5m with as = 3m in order to create a space affordance which

the robot has to avoid if people in the environment are interacting with it, what means

that the space affordance is being used as an Activity Space.

A single human, placed in front of the object in the position x = 2m, y = 2m, has

been used for this test. The robot has had to navigate from the position x = −0.8m,

y = 3m to x = 4.5m, y = 3m, avoiding the space affordance of the object if the person

is interacting with it.

The same test has been carried out with and without space affordances. The

comparison between the different paths the robot took can be seen in Fig. 6.3b, and
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Fig.6.3c where it is marked the path planned in both situations. It can be noticed that,

in the first case, the robot interrupts the human in the performance of its activity.

(a) Simulated interactive scenario

(b) Navigation withouth Space Affordance (c) Navigation with Space Affordance

Figure 6.3: Interactive scenario described for the test and navigations results with and
withouth spaces affordances

Table 6.7 shows the results of navigation with and without space affordances,

obtained for each of the metrics used, explained in 6.1: average minimum distance to

a human during navigation, dmin; distance traveled, dt ; navigation time, τ; cumulative

heading changes, CHC and personal space intrusions, Ψ. It is also indicated whether

the activity performed by the human has been interrupted or not.
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Table 6.7: Navigation results with space affordances

Navigation with space affordances Navigation without space

affordances

Parameter Value (σ ) Parameter Value (σ )

dt (m) 8.76m dt 5.18m

τ 64.1s τ 33.84s

CHC 1.47 (0.11) CHC 0.21 (0.05)

dmin Person (m) 0.78 (0.007) dmin Person (m) 1.10 (0.005)

Ψ (Intimate) (%) 0.0 (0.0) Ψ (Intimate) (%) 0.0 (0.0)

Ψ (Personal)(%) 0.0 (0.0) Ψ (Personal)(%) 0 (0.0)

Ψ (Social)(%) 15.46 (0.6) Ψ (Social)(%) 12.54 (0.57)

Ψ (Public)(%) 84.53 (0.6) Ψ (Public)(%) 87.44 (0.9)

Interruption (Y/N) N Interruption (Y/N) Y

In the table 6.7 the navigation results with and without spaces affordances can

be seen. Firstly, it should be noted that, as is obvious, the robot navigates further

when considering the space affordance (i.e. dt is higher). For the same reason, in this

situation the robot takes longer to reach its destination (i.e. τ is higher). In addition,

the CHC is also higher, since if the space affordance are not considered, the path is

practically straight.

It should be noted that, in the experiment in which space affordances are

considered, the minimum distance to the person (i.e. dmin) is less than when they are

not considered. This is due to the shape of the Gaussian curve used to describe human

personal space. This curve, as explained in [1], is smaller from the rear than from the

heading of the person, therefore, when the robot tries to avoid space affordance it can

get closer to the person.

Regarding the personal space intrusion, Psi, in both scenarios the interaction spaces

are respected. The robot has invaded the human social space when necessary and this

has been only in a small part of the path.
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6.4 Human-Robot Interaction Experiment

A set of simulated scenarios were used to validate the results of the proposed

navigation planning domain. The algorithms have been developed in C++ and the tests

have been performed in a PC with an Intel Core i5 processor with 4Gb of DDR3 RAM

and Ubuntu GNU/Linux 16.10. Quantitative and qualitative experimental results have

been evaluated, including social navigation metrics and the results of a Likert-scale

satisfaction questionnaire. A simulated version of the robot Viriato, a social robot

equipped with an RGBD camera and laser range sensor has been used.

The simulated scenario is a 65m2 two-room apartment equipped with a kitchen and

a living room, where two different tests are described1: First, a human blocks the path

in the corridor; and second, two people talking blocking the robot’s path. The robot

Viriato navigates through this apartment to several positions. Fig. 6.4 summarises the

tests in six steps: In Fig. 6.4. 1 the robot starts its route. Its first target is located in the

corridor. In Fig. 6.4.2 the robot plans its path and navigates to the human. After asking

for collaboration, the robot navigates to the first target (Fig. 6.4.3). In the second test

(Fig. 6.4.4), the robot has the target in the second room, plans its path and initiates a

conversation with people (Fig. 6.4.5). Finally, once the robot asks for permission to

pass, it navigates to its target position.

1A video of the experiments is located on goo.gl/KdGYBN

57



6.4. HUMAN-ROBOT INTERACTION EXPERIMENT

Figure 6.4: Steps of the test used in the experiment

In order to assess the effectiveness of the proposed navigation approach, the

methodology has been evaluated accordingly to the metrics explained in 6.1: average

minimum distance to a human during navigation, dmin; distance traveled, dt ; navigation

time, τ; cumulative heading changes, CHC and personal space intrusions, Ψ. Results

are summarised in Table 6.8 and Table 6.9.

Table 6.8: Results of the first HRI
experiment

Parameter Obtained values (σ )

dt (m) 7.44 (0.15)

τ(s) 46.06 (14.75)

CHC 0.76 (0.15)

dmin Person 1 (m) 1.68 (0.03)

dmin Person 2 (m) 1.67 (0.03)

dmin Person 3 (m) 1.47 (0.04)

Ψ (Intimate) (%) 0.0 (0.0)

Ψ (Personal)(%) 19.36 (1.05)

Ψ (Social)(%) 13.03 (2.48)

Ψ (Public)(%) 67.6 (2.34)

Table 6.9: Results of the second HRI
experiment

Parameter Obtained values (σ )

dt (m) 8.16 (0.35)

τ (s) 44.8 (12.52)

CHC 1.37 (0.18)

dmin Person 1 (m) 1.69 (0.15)

dmin Person 2 (m) 1.27 (0.09)

dmin Person 3 (m) 1.00 (0.06)

Ψ (Intimate) (%) 0.0 (0.0)

Ψ (Personal)(%) 26.86 (3.10)

Ψ (Social)(%) 17.33 (4.92)

Ψ (Public) (%) 55.8 (4.26)

To assess the satisfaction of the humans regarding the robot’s behavior and HRI
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abilities, a Likert scale-based questionnaire was provided to a total of 34 participants.

The results of the questionnaire, including the questions are shown in table 6.10.

Table 6.10: Satisfaction questionnaire.

Question avg. answer (σ )

Robot’s behavior is socially appropriate in exp. 1 4.41 (0.54)

Robot’s behavior is socially appropriate in exp. 2 4.47 (0.40)

Robot’s behavior is friendly in exp. 1 3.79 (0.60)

Robot’s behavior is friendly in exp. 2 4.05 (0.52)

The robot understands the social context and the interaction in exp. 1 4.32 (0.62)

The robot understands the social context and the interaction in exp. 2 4.37 (0.71)

In Fig. 6.4 the social behavior of the robot has had during the experiment can be

observed. When it detects that the path is blocked, it approaches to the human or group

of humans and asks for permission or collaboration to pass.

From the results obtained in the tables 6.8 and 6.9 it should be noted that in both

experiments the robot invades the personal space of the human. However, it does so

with prior permission to pass, so it does not imply non-social behaviour. In spite of

this, most of the way the robot tries to avoid the different zones of social interaction

defined for the person.

The other metrics calculated do not provide much information to the evaluation of

the interaction between Human and robot.

The video of the experiment has been viewed by a large number of people who have

expressed their opinion on the social behaviour of the robot. These results, shown in the

table 6.10, can be considered positive, as an average of more than 4 positve responses

have been obtained.
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Chapter 7

Conclusions and future work

Despite the increasing use of assistance robots in many different areas and applications,

the integration of these in a social context is still a problem to solve. This requires to

research and develop techniques that allow these robots to act in a socially acceptable

way.

This work is a continuation of the previous work presented in [1]. It presents a

social navigation approach considering real environments in crowded environments.

Several improvements to the previous navigation algorithm are proposed. Among

them, the detection and tracking of humans in real time; the inclusion of interactive

spaces that take into account the interactions that humans usually perform with objects;

the adaptation of human personal space to the environment in which it is located; and

the definition of a human-robot interaction planning domain.

From the main results of this work it can be concluded that the new methodology

improves the previous social navigation algorithm. First, a reliable detection and

tracking, at real time, of people in the environment has been obtained. In addition,

successful navigation results have been obtained in which the robot has socially

navigated in the environment, taking into account the interaction spaces defined for

humans, even in reduced scenarios (e.g., corridors). Finally, the proposed system has

been achieved, through human-robot interactions, that the robot asks permission or

collaboration to people in cases where the path is blocked.
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A hypothesis was initially raised in this work, which said that it is possible

to improve the human experience with an assistance robot in real environments

with a robust social navigation system and a human-robot interaction planner for

human-centered navigation. It can be concluded that this hypothesis is correct, since

the results obtained in this work are proof of this.

Although in this work several ideas and improvements are presented for social

navigation algorithms, the world of robotics is so broad that there is always a lot of

problem to solve. Below are some possibilities that could be implemented in the future

in the topic of social navigation for autonomous robots:

• Human information can come from several sensors, so it would be necessary to

implement a way of fusing the information from all of them.

• In addition, other features, such as action recognition, emotions or facial

recognition can be included.

• In this work only motionless humans are considered, that is, only static scenarios.

However the speed of moving humans could be taken into account when

planning the trajectory.

• In terms of interactive scenarios, it could be taken into account that the

probability of interacting with certain objects varies throughout the day (for

example, a person is more likely to interact with a refrigerator at lunchtime).

This could be taken into account by varying the weights of the graph according

to the time of day.

• In this work only three types of interaction between human and robot are

considered. For proper social behavior, it would be necessary to increase the

number of interactions. A possible example would be for the robot to approach

the person and offer to exercise when it detects that the person has spent a lot of

time at rest.
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• In addition, certain actions such as guiding the person to a certain place,

accompanying the person or following the person could be added to improve

the social behaviour of the robot.

7.1 Contributions

The main contributions of this work have been publishes in international journals and

conferences. As summary of these contributions is described bellow.

• A. Vega, L. J. Manso Argüelles, R. Cintas Peña, and P. Núñez Trujillo, “Planning

Human-Robot Interaction for Social Navigation in Crowded Environments:

Proceedings of the 19th International Workshop of Physical Agents (WAF

2018).” , 2018, pp. 195-208.

• A. Vega, L. J. Manso Argüelles, P. Bustos Garcı́a, and P. Núñez Trujillo,

“A Flexible and Adaptive Spatial Density Model for Context-Aware Social

Mapping: Towards a More Realistic Social Navigation,” in Proceedings of the

15th International Conference on Control, Automation, Robotics and Vision,

United States, 2018.

• A. Vega, L. Manso Argüelles, D. G. Macharet, P. Bustos Garcı́a, and P. Núñez

Trujillo, “Socially aware robot navigation system in human-populated and

interactive environments based on an adaptive spatial density function and space

affordances,” Pattern Recognition Letters, 2018.
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Appendix A

Personal Space calculation and

clustering of people

This appendix explains how is calculated the personal space of humans and how the

people clustering is performed in the social navigational algorithm presented in [1].

A.1 Personal Space Modelling

Let S ∈ R2 be the space of the Global Map. An individual i is represented by its

position qi = [xi yi]
T in S and it orientation θi ∈ [0,2π]. The personal space is modelled

by a asymmetric 2-dimensional Gaussian function [12], which associates the distance

between a point p = [x y]T ∈ S and the person’s position with a real value gi ∈ [0,1].

The expression for the Gaussian function is shown in the eq. A.1:

gi(x,y) = exp(−(a(x− xi)
2 +b(x− xi)(y− yi)+ c(y− yi)

2)), (A.1)

Where the coefficients a,b and c are used to take into account the orientation θi,

and are defined by the relations:

a(θi) =
cos(θi)

2

2σ2 +
sin(θi)

2

2σ2
s

,

b(θi) =
sin(2θi)

4σ2 − sin(2θi)

4σ2
s

,
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c(θi) =
sin(θi)

2

2σ2 +
cos(θi)

2

2σ2
s

,

where σs is the variance to the sides (θi± π/2 direction) and σ represents the

variance along the θi direction (σh) or the variance to the rear (σr) [12]. Figure A.1b

illustrates the personal space model of the two humans shown in A.1a.

The decision to use Gaussian functions to modelling personal spaces is very useful,

since it allows for many established techniques to be used in this context. In this case,

it will be used as the input of a global density function that clusters the individuals, as

the next section explains.

(a) example scenario (b) Asymmetric Gaussian function

(c) Result of applying the density
function

(d) Group contour

Figure A.1: Graphical representation of the results obtained applying the social
navigation algorithm presented in [1].

A.2 Individuals Clustering

When considering groups of humans, it is needed to define how to associate the various

personal spaces of each individual. This association is accomplished by performing
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a Gaussian Mixture. The personal space function gi(p) of each individual i in the

environment is summed and it arrives at a Global Space function G(p). The proposal

defines the Global Space Function:

G(x,y) = ∑
i∈P

gi(x,y). (A.2)

Having performed the association and calculated the value of G(p), the next

step is to separate the individuals in groups. The method described discriminate the

group contour to which each individual belongs, so it can define regions of forbidden

navigation. This is accomplished by using the method described in [24].

This method was originally employed for grouping points in a point cloud to

categorize them as to whether they belong to the same object. In essence, this method

takes advantage of the property that, if for each point in a point cloud we associate a

Gaussian function centered around it, then the closer two or more points are, the larger

the sum of their respective Gaussian will be. This same line of reasoning can be used

to group people into clusters which a robot can use to reason about space.

The method chooses the Ω parameter as the smallest euclidean distance between

two people pi, p j ∈ P such that those two are neighbours. This value is given by the

insights of proxemics. If pi, p j are neighbours, then ‖pi, p j‖ ≤ Ω, and the density

contribution δ between them is

δ = gi(p j). (A.3)

Since gi(qi) = 1 for each qi ∈ P, then if qi has k neighbours then G(qi) ≥ 1+ kδ .

Therefore, in order to group individuals who have at least k neighbours, the method

can adjust a density threshold φ given by

φ = 1+ kδ , (A.4)

and it can compare the value of the Global Function for each point in S and determine

whether that point belongs to the personal space of a group of individuals. The set of
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such points is denoted by J and given by the expression

J = {p ∈ S | G(p)≥ φ}. (A.5)

By manipulating the value of φ either by setting it directly or by manipulating the

value of δ , it is able to control how near or far the border of J is in relation to each

human in the cluster. In the method described the threshold has been fixed to φ = 0.4,

so that the border of the forbidden region is not immediately adjacent to an individual.

Finally, the contours of these forbidden regions are defined by a set of k polygonal

chain (i.e., polyline) Lk = {l1, ..., lk}, where k is the number of regions detected by the

algorithm. The curve li is described as li= {a1, ...,am}, being ai = (x,y)i the vertices of

the curve, which are located in the contour of the region J. The number of vertices, m,

is dynamically adjusted by the algorithm, being the Euclidean distance between two

consecutive vertices, d(ai,a j), less than 10 cm. The results of applying the density

function are shown in Fig. A.1c and the final polyline obtained is shown in Fig,.A.1d.



Bibliography

[1] Araceli Vega Magro. Desarrollo de un algoritmo de navegación social para robots
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