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1.Abstract

This paper is focused on real-time algorithms for estimating dense 3D structure and camera motion from images 
sequence. Within this approach a practical method is proposed which can retrieve metric reconstruction from 
continuous image sequences obtained with uncalibrated cameras.

Our approach can be divided in two main stages. First, the projection matrices between non-differential camera 
displacement are estimated, it's known this process relies on correct estimations of matched points. In order to  
efficiently  deal  with  correspondence  searches,  a  continuous  differential  tracking  of  interest  points  is  
accomplished by a real-time parameter estimation procedure. Making use of those projection matrices, a self-
calibration  and  camera  ego-motion  estimation  are  carried  out.  Secondly,  a  dense  point  reconstruction  is 
performed  combining  optical  flow constraint  with the  projective  model  of  a  moving camera  that  has  been 
determined  in  previous  stage.  In  both  stages  no  correspondence  searches  are  found  in  an  explicit  way, 
alternatively corresponding point searches are guided by a continuous tracking of interest points and optical flow 
constraint. Additionally, we implement a multi-resolution approach to avoid failures in employing differential  
models such as optical flow constraint, that is the case of large image displacements.



2.Introduction

One of the main goals in robot vision is recovering 3D spatial information from 2D image-projected points, this  
task grows in complexity when the unique information available is the data present in the image sequence, such 
as pixel grey values or color components.

It become clear that with uncalibrated camera and no additional constraints, only a projective 3D reconstruction  
stratum can be obtained from images correspondences,  hence the projection matrices  and the reconstructed  
points are related to real world by an indeterminate projective transformation. We can imagine that this structure 
is unsuitable in real applications, nevertheless it constitutes a proper starting structure, which needs a further  
enhancement.

To upgrade this basic projective 3D structure to the useful Affin and Metric ones, additional constraints over  
camera parameters must be imposed. Affin upgrade are related to locate and place the so call "plane at infinity"  
at  his canonical  position. On the other hand,  metric upgrade is related to the estimation of camera  internal  
parameters, such as focal length, central points and skew. Both structure enhancements comprise the entire self-
calibration stage.

As the starting structure is 3D projective, and this estimation relies on correct calculation of matched points. An 
efficient algorithm to search matching points is necessary in real-time implementations, that decreases the heavy 
computational load. Early works have fixed those problems using a calibrated framework, in those methods a 
camera internal parameters and camera pose are computed ahead with the aid of a known metric pattern. Hence  
the major detriments of those methods is employing an off-line estimation, and be linked to fixed internal camera 
parameters.  The Maybank and Faugeras[1]  research  opens a possibility of  calibrating a camera  by using a 
sequence of images, and without previous knowledge of scene points at which the camera is situated. In those 
kind of techniques, the calibration process can be carried out just with the information available from the images.  
Subsequent works have extended this process allowing varying internal camera parameters[2].

Present work differs from later approaches in the method used to obtain matching points. As we are interested in  
real-time  algorithms  to  scene  reconstruction,  this  search  must  be  less  expensive  that  former  algorithms. 
Improvement in time requirement can be achieved by taking advantage from the differential image sequence 
properties. The key idea is to perform low cost calculations between differential images, light enough that can be 
carried out while camera is moving. In this way, to deal with correspondence search, a continuous differential 
tracking of select points is accomplished.

Finally, in order to retrieve dense reconstructed points, a dense correspondence search must be done somehow 
from the image sequence. This task can be accomplished by searches of homologous over epipolar lines and 
minimization criterions, such as normalized cross correlation. In this work, this dense reconstruction process is 
performed combining optical flow constraint with previously estimated projective model and image rectification.

3.Projective Model

The projection of a 3D scene point onto an 2D image point can be solved using a projective model, that is  
determined by a projective transformation matrix P.

The equation m =PM relates the involved parameters, where m=[x y 1]T is an image point  and M = [X Y Z 1]T is 
a scene point, both expressed in homogeneous coordinates, and P is the projection matrix of dimension 3x4, that 
maps world point onto sensor points at a fixed position of a camera.

In a calibrated framework, the camera projection matrix can be factorized as follows:

K  [ R T  |-R T   T  ]



Where T represents a translation vector and R a rotation matrix, both performing a rigid euclidean transformation 
between  the  camera  pose  and  world  reference  coordinate  system.  K is  un  upper  triangular  matrix,  called 
calibration matrix, that encodes the intrinsic parameters of camera construction, it can be interpreted as an affin 
transformation between image plane and sensor array plane.
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 The parameters  fx  and  fx  represent the focal length in x-and y-sensor axe, [  u0 , v0  ]  is the principal point 
coordinates determined by the projection of the optical axe, and s is the skew or angle between x and y sensor 
axes. All of them depend on the camera construction and camera operation.

In a calibrated framework, an image sequence is acquired with different  known calibrated-cameras (  K0,  ...,  
Kj, ..., Ks), at unknown positions ( R0 T0,  ... , Rj Tj,  ..., Rs Ts ). Therefore, an euclidean scene point M0 is projected 
at different sensor positions So  :  (  m0, ..., mj, ..., ms ),  this set of points is called homologous points in the image 
sequence, and are determined by the following equations.

m0   =  P M0  =K0   [ R0 T  | - R0 T   T0  ] M0

mj    =  P M0  =Kj   [ Rj  T  | - Rj T   Tj   ] M0

ms   =  P M0  =Ks   [ Rs T  | - Rs T   Ts  ] M0

A group of sets of homologous points ( So, ..., Sp ) can be determined in advance by means of normalized cross 
correlations over image sequence or another search mechanism. Consequently it constitute the input data for the 
search engine in the reconstruction problem. We can conclude that in this case,  the reconstructions problem 
consists of searching the camera positions ( R0 T0,  ... , Rj Tj,  ..., Rs Ts )  and the 3D euclidean points (M0, ..., Mp ) 
such that fit the sets of homologous points in the image sequence ( So, ..., Sp ).

The  uncalibrated  case  is  more  general  and  complex,  it  assume  that  K matrices  are  unknown.  Under  this 
circumstance, it's convenient to start with a projective structure, that involves less restrictive projection matrices 
( P0, ..., Pj, ..., Ps ) and less restrictive reconstructed points M. In this case the reconstruction problem consists of 
searching a set of projection matrices  ( P0, ..., Pj, ..., Ps )  and 3D projective points  (M0, ..., Mp )   such that fit the 
sets of homologous points in the image sequence  ( So, ..., Sp )  .

It's known this problem has no unique solution due to the use of less restrictive model. The possible solutions to 
this  problem  are  related  one  another  by  an  indeterminate  projective  transformation  T.  The  particular 
transformation  T* that upgrade projective reconstruction to euclidean one, constitute the search target  of any 
calibration mechanism. It's convenient to explain that this target transformation is the unique that can factorize 
the result projection matrix in a proper euclidean form, as follows:  PT*=P'=K[R|-RT]

m0   = P0 M  =(P0 T*)(T*-1M) = P0' M'=K0   [ R0 T  |-R0 T   T0  ]M'

mj    = Pj M  =(Pj T*)(T*-1M) = Pj' M' = Kj   [ Rj  T  |-Rj  T   Tj   ]M'

ms   = Ps M  =(PsT*)(T*-1M) = Ps' M' =Ks   [ Rs T  |-Rs T   Ts  ]M'



4.3D Reconstruction

4.1.Interest Point Selection

The algorithm begins with a selection of points that are easily identifiable and with stable existence properties 
along the sequence, those points compose the support for the correspondence searching. With this aim, those  
points have to be stable under common transformations, such as camera translation, rotation and zoom, this 
property ensures a high degree of repeatability in the images. Another requirement is those points content high  
information around its image position that enables an easy identification.

In order to search such interest points, we employ a Harris[3] corner detector that has such desirable properties. 
It takes into account image gradient in x-direction Ix and y-direction Iy ,that allows determining image points that 
have significant changes in both directions (corner) around its position. The neighborhoods are weighted by a 
gaussian filter G to take into account less significant importance of distant regions, the interest Harris points are 
detected by the following expressions: 
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4.2.Interest Point Tracking

The success of the initial projective reconstruction and hence the overall algorithm, relies on a correct estimation  
of matching points in the sequence.  Therefore,  the robustness of the algorithm depends on the capability of 
detecting and rejecting mismatches. We implement three hierarchical levels of confidence for matching points 
validation, the first is a motion estimation and tracking of interest points based on a Kalman filter. The second  
consists of a  normalized cross correlation test  over  points that  have been previously linked by the tracking 
procedure. Both levels have different sampling scope, the point tracking is accomplished continuously as frame 
is acquired. On the other hand, normalized cross correlation test is carried out when significant displacements of 
matched points are accumulated along frames.

We utilize the following Normalized Cross Correlation, where I  is the grey level mean into a squared region 
of dimension bxb pixels.
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The result of this process is a list of sets, where each set is composed of confident matched points that conform 
the projection of an unknown 3D point  in the images.  The third confidence  test  is  accomplished using the  
RANSAC (RANdom SAmpling Consensus) paradigm explained in the next section.

4.3.Initial Projective Reconstruction a Six Point Solution 

The goal of this section is to obtain an initial solution of camera projection matrices, and projective structure of 
3D points that have a set of matched points. That allows employing a posterior reprojective mechanism linked 
with a RANSAC[4] method to validate both estimations.



Therefore, the input data of the algorithm is same sets of interest point trajectories (corner here) into the image 
sequence,  trajectories  that  have  passed  the  former  confidence  tests.  Hence,  camera  projection  matrices  and 
structure  estimation  involve  a  parameter  search  which  fits  the  data  input  correspondences.  Once  both  are 
obtained, them conform the basic for calibration process and posterior structure upgrade.

Our approach use base sequences of three views, to this end it's necessary to split the overall sequence in sub-
sequence of image triples, that correspond with the output of three consecutive normalized cross correlation  
level.  To compute the camera  projection matrix  of  each  sub-sequence,  we use a minimal method[5],  those 
minimal approaches have the advantage of needing the least data that is necessary to estimate structure and 
camera  pose,  analogy to estimate  the images  transfer  geometry such as  trifocal  tensor.  Such is  the case  of  
computing epipolar geometry with the minimal set of seven points correspondences in two views. 

We compute the projection matrices and 3D structure with the minimal set of six corner tracking over three 
views. In this calculation if a mismatch comes about into the selected six points, leads to an improper projections  
matrices estimation. Hence those minimal solutions are used as search engine in robust estimation methods, such 
as reprojection and RANSAC as summarize.

RANSAC:

1- Choose six sets of point correspondences and make up a 3D projective basis liked to five of them.

2- Compute projection matrices and 3D coordinates by means of this six points.

3- With former solution compute 3D coordinates of all remaining homologous sets.

3- Compute reprojection error of all 3D points

if 70 per cent are good enough exit

 else go to step 1

4.4.Camera Calibration 

Once camera projection matrices are correctly estimated in a projective framework, we can use them to camera 
calibration  and  hence  to  metric  upgrade  computation.  It's  convenient  to  remark  that  this  initial  projective 
structure is  related to a metric one by two important  transformations,  which represent  the overallcalibration 
process.

The first one involves the localization of the particular plane that holds the metric points at infinitum  Π p=[πx, 
πy,  πz, 1]  (where  πx,  πy,  πz  unknown ). Once this plane is localized the transformation  T  that recover its 
original metric position at Πm = [1, 1, 1, 0 ] also restore the affin properties of the original structure, that is  Π m = 
T -1 Π p  ⇒   M (Affin) = T M (Projective). The second consists of an affin transformation Tm = K-1  characterized by 
the camera internal parameters  K  and conform the final metric upgrade.

To estimate both transformations, we employ an approach based on the absolute dual quadric Ω*, this concept 
was introduced by Triggs[6] and subsequently by Pollefeys[2] with varying camera intrinsic parameter. This 
quadric jointly encodes the position of the euclidean points at infinitum infinitum  Π∞

p=[πx, πy, πz, 1]   together 
with camera constructions parameters  K0  of first view in a compact form.

This fact can be explained by two qualities, this 3D quadric is always confined in a plane, and this plane is just 
the euclidean plane at infinitum. On the other hand its shape is characterized by the camera internal parameters  



K0  K0
-1.  Those two properties and its  associated unknown parameters are put on view in the absolute dual 

quadratic expression.
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 The link that allows camera self-calibration with this entity is another basic property, when is projected over any 
image by means of the corresponding known camera projection matrix Pj,  this quadric become a 2D conic Kj  

Kj
-1  that codifies the camera calibration matrix of this particular camera.

Wj =Kj Kj
T = PjΩ∗Pj

T

This property allows camera calibration, provided that same restrictions over camera internal parameters KjKj
-1  

(left)  are  known,  such as  fixed focal  length,  zero  skew,  known principal  point,  each  of  those  assumptions 

imposes a restriction in the quadric form, and hence in the unknown parameters, πx, πy, πz and K0 . In this work 
zero skew, known principal point and  fx  = f y  have been assumed.

4.5.Image Rectification

Once the calibration matrices ( K0, ..., Kj, ..., Ks ) and rotation matrices of each camera ( R0, ..., Rj, ..., Rs ) are 
known, it's to convenient transform the original image sequence Q in other sequence Q' where each new image is 
equivalent to another one taken at the same camera translation but with no rotation component.

This process is accomplished by warping the original image, thus each original point m is transformed to its new 
position by the warping transformation m' = K R-1K-1m. This transformation cancel the rotation component, as 
can be deduced by the following equations:

m0'  = K0 R0
-1K0

-1m0= K0 R0
-1K0

-1K0   [ R0   | -R0
  T0  ]M = K0 [I  |-T0]M

           mj'  = Kj Rj
-1Kj

-1mj= Kj Rj
-1Kj

-1Kj   [ Rj 
   | -Rj 

  Tj   ]M = Kj [I  |-Tj]M           (1)

ms'  = Ks Rs
-1Ks

-1ms= Ks Rs
-1Ks

-1Ks   [ Rs
    | -Rs

   Ts  ]M = Ks [I  |-Ts]M

Generally this new position won't be integer, hence an image grey level interpolation will be necessary. As result  
of this process each image has its epipolar lines in horizontal position, it allow an efficient employment of region 
based optical flow mechanism in dense map reconstruction.

4.6.Dense Deep Map

In order to compute a dense deep map, we employ the optical flow restriction along with previously estimated 
image rectification. As previously commented those rectifications are equivalent to another sequence with no 
rotation and equivalent translation, that allows a more accurate calculation in region based optical flow.



Let  I=I(x,y,t) denote the time-varying image intensity function and let  (u,v)  denote the  x-y-components of the 
instantaneous optical  flow. The computation of the optical  field using the classical  image motion constraint 
equation Ixu+Iyv+It=0 is difficult to owing to the aperture problem an unstable. Instead we employ a region  
support adopting the approach of Lucas y Kanade[7] .

This approach obtains the necessary additional constraints from a finite region around the point, and combines  
its spatial and temporal derivatives by gaussian filter weight.

 This region based optical flow constraint relate the position of an image point  m=(x, y, 1)  to its homologous 
m=(x+u, y+v, 1)  in the next image. This equation can be easily manipulated to take into account points instead  
of displacement vectors, this yields the following linear system of two equations:
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 This linear system represents two lines in the projective plane sx
j and sy

j , which have the important property of 
containing just the homologous point mj

  in the next image j, hence sx
j mj=0 and sy

j mj=0 . In addition both lines 
cross one other in the homologous point mj

 . The angle between them is related to the eigenvalues obtained with 
the Harris corner detector, and represent the amount of x-y-gradient information around the pixel position, this 
measure determines the quality of the implicit matching process.
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 In  each consecutive image triples,  the algorithm computes  a  dense deep map combining the two previous 
models:  a)  An  Euclidean  model  obtained  with  a  camera  undergoing  translational  movements  and  their 
corresponding rectified images and b) the projective lines obtained by the optical flow equations. The first model 
depends  on the following parameters:  scene  points  coordinates  (unknown),  camera  calibration (known) and 
translational component (known), on the other hand the second depends on image intensity gradients (known). 
Combining those models by means of equations (1)(2)(3) lead to the following four equations for each point in  
the image:

sx
1 m0 = sx

1 K1 K1
-1m0 -(1 / z) sx

1 K1T1=0

sy
1 m0 = sy

1 K1 K1
-1m0 -(1 / z) sy

1 K1T1=0

sx
2 m0 = sx

2 K1 K1
-1m0 -(1 / z) sx

2 K1T1=0

sy
2 m0 = sy

2 K1 K1
-1m0 -(1 / z) sy

12 K1T1=0

In order to calculate the inverse deep map structure  (1/z), we minimize the contribution of each of the four 
equations in the unknown parameter  (1/z). This approach lead to minimize the following expression in each 
image point:

Min [ sx
1 m0 + sy

1 m0 + sx
2 m0 + sy

2 m0 ]

5.Results



In the experiment a multi-scale approach has been employed to allow higher range of image displacements. We 
have built an hierarchical Laplacian pyramid of three levels, by this mechanism the estimations in higher levels 
have been reutilized as initial data to perform the estimation in the lower ones. With this approach we were able 
to manage displacements close to 40 pixels. The input sequence is showed in figure 3, it's composed of image 
triples  in  grey  scale  values.  In  the  following  figures  the  result  inverse  deep  map  is  showed  at  different 
resolutions, figure 4 represents the lower resolution, figure 5 medium resolution and finally figure 6 illustrates 
the refined inverse deep map. In all of them the grey scale values represent the corresponding scaled values of  
the inverse depth.

We have used an AMD-K7 processor at 800MHz, the code has been constructed employing MMX and 3Dnow 
instructions building a set of computer vision libraries, that have allowed to accelerate the heavy operations. 
With this environment the result real Magaflops has been 600.

Figure 1 Real input sequence

Figure  2 Deep map at lower resolution



Figure 3  Deep map at  medium resolution

Figure 4 Deep map at higher resolution
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