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AQ1

Abstract. Collaboration is an essential feature of human social inter-
action. Briefly, when two or more people agree on a common goal and a
joint intention to reach that goal, they have to coordinate their actions
to engage in joint actions, planning their courses of actions according to
the actions of the other partners. The same holds for teams where the
partners are people and robots, resulting on a collection of technical ques-
tions difficult to answer. Human-robot collaboration requires the robot to
coordinate its behavior to the behaviors of the humans at different levels,
e.g., the semantic level, the level of the content and behavior selection
in the interaction, and low-level aspects such as the temporal dynam-
ics of the interaction. This forces the robot to internalize information
about the motions, actions and intentions of the rest of partners, and
about the state of the environment. Furthermore, collaborative robots
should select their actions taking into account additional human-aware
factors such as safety, reliability and comfort. Current cognitive systems
are usually limited in this respect as they lack the rich dynamic rep-
resentations and the flexible human-aware planning capabilities needed
to succeed in tomorrow human-robot collaboration tasks. Within this
paper, we provide a tool for addressing this problem by using the notion
of deep hybrid representations and the facilities that this common state
representation offers for the tight coupling of planners on different layers
of abstraction. Deep hybrid representations encode the robot and envi-
ronment state, but also a robot-centric perspective of the partners taking
part in the joint activity.

Keywords: Deep representations · Cognitive robots · Agent-based
robotic architecture

1 Introduction

In order to engage humans in interactions, the new generation of robots should
be able to emanate responses at human interaction rates and exhibit a proac-
tive behaviour. This proactive behaviour implies that the internal architecture
c© Springer International Publishing AG 2016
K. Amunts et al. (Eds.): BrainComp 2015, LNCS 10087, pp. 1–15, 2016.
DOI: 10.1007/978-3-319-50862-7 14
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2 L.J. Manso et al.

of these robots should not only be able to perceive and act, but also to perform
off-line reasoning. Cognition is the ability that allows us to internally deal with
information about the external world and, hence, this ability is subject to the
existence of an internal representation of this information. Classical cognitive
systems posit an inner realm richly populated with internal tokens that stand
for external objects and states of affair [27]. These internal representations, how-
ever, are not valid to generate predictions or reasoning. Recent works suggest
that cognitive architectures cannot work on a passive, bottom-up fashion, sim-
ply waiting to be activated by external stimuli. Instead, these architectures must
continuously use memory to interpret sensory information and predict the imme-
diate future. These predictions about the outer world can be used to actively
drive the resources to relevant data in top-down modes of behaviour, allowing
an efficient and accurate interpretation of the environment [27,37].

The concept of deep representations was clearly described by Beetz et al. [33]:
representations that combine various levels of abstraction, ranging, for example,
from the continuous limb motions required to perform an activity to atomic high-
level actions, subactivities, and activities. This definition is however provided in
a paper where the robot performs its activities alone. If a collaborative robot has
to cooperate with a human partner as a work companion, it should be endowed
with the abilities to consider its environmental context and assess how exter-
nal factors could affect its action, including the role and activity of the human
interaction partner in the joint activity. Efficient collaboration not only implies a
common plan for all involved partners, but also the coordination of the behavior
of each agent with those of the other ones, i.e. to gain a joint intention. This coor-
dination should be simultaneously addressed at different levels of abstraction,
and to correctly satisfy it, the robot has to internalize a coherent representation
about the motions, actions and intentions of the rest of partners. Additionally,
a major difficulty in human-robot collaboration (HRC) scenarios is that people
cannot only exhibit a rather non-deterministic and unstable behavior, but they
also tend to perceive current robots as slow and unintelligent. These factors
difficult HRC. To overcome them, the robot should continuously try to guess
their partners’ goals and intentions, triggering appropriate reactions -i.e. being
socially proactive.

Symbolic and metric representations have been separately proposed in many
different forms and uses. Symbolic knowledge representation have been at the
core of AI since its beginnings [21,23] and cover all forms of relational formal-
izations such as production rules, frames, schemes, cases, first order logic or sit-
uational calculus. At a high level of abstraction, the Robot Learning Language
(RoLL) [32] could be used for learning models about human behaviour and reac-
tions, joint plan performance or recognizing human activity. Also, human models
have been employed by the Human-Aware Task Planner (HATP) [34]. A sym-
bolic graph structure was proposed in [14] as part of our previous architecture
RoboCog [6]. On the other hand, metric and kinematic representations are com-
monly used as part of 3D simulators and graphics engines [39,40]. However, the
concept of deep representations [33] implies an unified, hierarchical organization
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Deep Representations for Collaborative Robotics 3

of the knowledge that ranges from the symbolic layer to the motor one, mapping
abstract concepts to, or from, geometric environment models and sensor data
structures of the robot. The inclusion of a detailed physical layer on the repre-
sentation will allow the robot to solve naive physics problems, which cannot be
performed based on abstractions, using temporal projection [26]. The presence
of a detailed representation of the spatial state of the problem is also required
in the work of Wintermute: ... actions can be simulated (imagined) in terms of
this concrete representation, and the agent can derive abstract information by
applying perceptual processes to the resulting concrete state [35]. The use of a
situational representation of the outer world to endow the robot with the ability
to understand physical consequences of their actions can be extended, in a col-
laborative scenario, to support proactive robot behaviors. This possibility has
been addressed in the LAAS Architecture for Autonomous Systems proposed by
Ali et al. [36].

The rest of the paper is organized as follows: First, Sects. 2 and 3 present
arguments that support the former claims. Section 4 describes the functioning of
our proposed architecture as a set of agents interacting through the deep state
representation. Section 5 briefly presents several application scenarios where the
world model is currently been tested. Conclusions and future work are drawn at
Sect. 6.

2 Agency

The concept of agent in Computer Science and Artificial Intelligence is rather
broad and their varied meanings cover most of what a program can do. Franklin
[10], after a through review of many proposals, synthesizes an autonomous agent
as a system situated within and a part of an environment that senses that environ-
ment and acts on it, over time, in pursuit of its own agenda and so as to effect what
it senses in the future. We propose here a similar definition of the term,

A computational entity in charge of a well defined functionality, whether it
be reactive, deliberative of hybrid, that interacts with other agents inside
a well-defined framework, to enact a larger system.

When several of these agents are somehow interconnected to enact a higher-
level function, they are called Agent-based Architectures. In robotics and AI,
they have been used for a long time [13,22] being Minsky’s Society of Mind [17],
probably the most famous one.

From the point of view of the implementation, we map agents to software
components in a one-to-many or one-to-one policy. To complete the definition,
a software component is a program that communicates with other programs
inside a well defined framework. Components are usually created as an instance
of a formal component model [4,5,25]. Note that there is not much difference
between agents and components and in many contexts both are interchangeable.
However, we use component here in the more restricted sense of being a program,
rather than a more general functional abstraction, like agents.
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4 L.J. Manso et al.

The CORTEX architecture is implemented using the component-oriented
robotics framework RoboComp [15]. The choice of a agent-based architecture
responds to computational simplicity and elegance. Agents are functional units
that can be easily combined to form in a given structure. They can be defined
recursively as made up of other simple agents, and there is always a rather simple
connection to the underlying software components. This is the first reason why
CORTEX is an agent-based architecture.

In CORTEX, higher-level agents define the classic functionalities of cogni-
tive robotics architectures, such as navigation, manipulation, person perception,
object perception, dialoguing, reasoning, planning, symbolic learning or execut-
ing. These agents operate in a goal-oriented regime [23] and their goals can come
from outside through the agent interface, and can also be part of the agent nor-
mal operation. For our needs, we want agents to be autonomous and obedient, at
the same time. Autonomous to provide opportunistic behavior so non-planned
events in the environment can be detected, and obedient so when new goals
arrive to the system, all task-oriented agents start working to achieve the cur-
rent sub goal. Thus, regarding the kind of function they perform, agents can
be anything in the reactive-deliberative spectrum, although in this paper and
to simplify the exposition we will refer to them whether as deliberative or reac-
tive. This flexibility in the internal organization of the agents, as the building
blocks on CORTEX, is the second reason why we have chosen an agent-based
architecture.

Communication among agents define the structural part of the architectures.
In cognitive robotics architectures, instead of a search for a correct model of
human intelligence, what is explored is the design space of embodied intelligence
[24]. We adopt here the broad view that these systems encompass two main
flows of information. First, a deliberative one, in which agents must provide a
symbolic description of the robot and the world to the deliberative agents, so
they can reason about facts and plan a course of actions to achieve the current
goal. These actions are sent back to the non-deliberative agents as local goals.
Second, a reactive one, in which non deliberative agents interact to perform a
sort of multi-modal behavior. These behaviors can be triggered by external goals
or by a recognizable situation ahead. Note that other horizontal functions of the
architecture such as memory and learning are left here to the internal functioning
of the agents and the representational mechanisms that they share.

An important requirement for the architecture is to facilitate the transi-
tion between deliberatively controlled behaviors and autonomous behaviors, so
there can be an overall improvement of task achieving performance. Either by
hand coding or by automatic learning, the way the architecture interconnects
agents must facilitate the incremental creation of autonomous, efficient and reli-
able skills. Let’s examine now a simple situation in which two agents have to
interact to complete a task. The agents are a Manipulation agent and an Object-
Perception agent. Within the deliberative flow, to locate and grasp an object
both agents must be coordinated by an Executive agent following a previously
computed plan. The basic steps could be,
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Deep Representations for Collaborative Robotics 5

1. DetectTarget( t )
2. MoveHand( t )
3. Grab( t )

A plan like this, when executed by the action and perceptual agents, although
it might succeed, will perform poorly. The reason is that there are many assump-
tions being made about the robot and the world that will result in a slow, fail-
ure prone and rigid behavior. It would be similar to someone following low-level
orders to do some new manipulation task. The solution is assuming that the tar-
get is static, the position of the target obtained by the camera and the position
to where the hand will arrive are the same, i.e. perfect calibration, that the arm
movement is very precise, that there is not uncertainty in the target position as
detected by the camera, among others. In real scenarios with uncertainty in the
measurement process, low cost mechanics and errors in the kinematic calibration
of the body-arm-head ensemble, a much more reliable method would be to use a
two-fold sequence. First, a sort saccadic arm movement takes the hand to a zone
close to the target, then, a visual servo loop re-positions the hand in the reference
system of the camera, thus canceling all calibration errors between the camera
and the hand [11,12]. This is a clear example of a skill that requires a fluid inter-
change of information between Object-Perception and Manipulation. Note that
the visual perception of the hand would also correspond to Object-Perception.
Adapting the former sequence of steps,

1. DetectTarget( t )
2. MoveHand( t )
3. InitiateVisualServo()
4. Grab()

MoveHand() is now an autonomous skill that involves both agents and
requires and intense interchange of information between them. The robotics cog-
nitive architecture must be prepared to incorporate these kind of changes. The
communication channels among agents must be flexible enough to allow for these
kind of reorganizations. Note that even if the agents would have been chosen dif-
ferently, so there were no need to transfer information externally, there will be
always other situations in which different agents would need to communicate1.
So the claim here is that a smart decision for an architecture would be to think
of some mechanism that could communicate information among agents without
much restrictions and still, be flexible enough to allow modifications, whether by
the programmer, or automatically through learning algorithms. This is the third
reason why CORTEX is built as a set of loosely coupled agents whose commu-
nication channels can be chosen in many different ways. We want to anticipate
the possibility of future improvements that will come in the near future, and the
design space provided by an agent-based architecture with regard to how agents
communicate is large. In particular, and as a solution seeking flexibility, we pro-
pose here that they communicate through a shared data structure, as explained
in Sect. 3.
1 Obviously we are discarding here the one big agent-doing-everything case.
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6 L.J. Manso et al.

3 The Deep State Representation

The Deep State Representation (DSR) is a graph structure that, within COR-
TEX, holds the representation of the robot and its environment. It is not the first
time that a graph structure is used for this purpose. However, to our knowledge,
the first works that proposed a graph as an internal representation for a robot-
ics architecture focused only in geometric data. ROS’ transform library, tf [9],
BRICS Robot Scene Graph [3] and RoboCog’s InnerModel [20] all appeared in
2013 as a response to the need for such a structure: a centralized representation
of robot and world kinematics. Even tough those constructions are important
advances towards better robotic architectures, a richer, and deeper representa-
tion was needed to hold the complete set of beliefs of the robot. In CORTEX, the
graph structure of the DSR holds symbolic and geometric data, and is accessed
by all agents during their operations. In fact, the DSR is the only means for the
agents to communicate. Figure 1 shows a small DSR graph with multiple labeled
edges representing heterogeneous attributes.

Fig. 1. Full graph of the DSR.
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Deep Representations for Collaborative Robotics 7

The idea of a shared representation among agents has its roots in several
classical papers [8,18,19] that developed the concept of the blackboard architec-
ture. Later, Hayes-Roth [2] extended this idea into a complete control architec-
ture. As A, Newell himself put it,

Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge
when he has something worthwhile to add to it. This conception is just
that of Selfridge’s Pandemonium [19]: a set of daemons, each independently
looking at the total situation and shrieking in proportion to what they see
that fits their natures...

In the original blackboard systems, agents where conceived more as prob-
lem solvers, heterogeneous experts that contribute to the overall problem in a
hybrid planned-opportunistic way. They communicate through a shared struc-
ture where goals, sub goals and problems state were incrementally updated. In
CORTEX, agents solve not only deliberative tasks but also perceptual, motor
and behavioral, so their communication needs are somewhat different. Neverthe-
less, we gather some ideas from these architectures [7,16] and also others from
graph theory and distributed databases.

3.1 Why Is the DSR a Graph?

The first reason to use a graph in CORTEX is because all internal informa-
tion defining the state of the robot and its beliefs about the environment, can
be stored according to a predefined structure. That structure is a model of
how sensor data can be interpreted and organized. As general data structures,
can hold any relational knowledge composed of discrete elements and relations
among them. In this broad category fall almost all symbolic knowledge repre-
sentation methods including frames, schemes, production rules and cases, and
also the geometric knowledge that the robot has to maintain about itself and
the environment. This geometric knowledge includes instances of the types of
objects recognizable in the world like i.e. chairs, tables, cups or generic obstacles
of undefined form. Also human bodies and its parts like arms, heads, legs, etc.
All these parts are kinematically related through 3D transformations forming a
scene-tree.

A second reason is that the graph can be made to evolve under some genera-
tive rules. Assuming that the type of nodes and edges are predefined, the graph
can evolve by inclusions or deletions of parts, causing structural changes. Also
it can evolve by changing the value of the attributes stored in nodes and edges.
The structural changes can be regulated by a generative grammar that defines
how the initial model can change. A typical example would be that of the robot
entering a new room and, after exploring it, it would add a new node to the
graph. The grammar would impede the new node to be connected to something
else but the corresponding door, and maybe it would be oriented parallel to one
of the walls of the proceeding room. So graphs gives us the capacity needed
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8 L.J. Manso et al.

(a) Initial world model in DSR with
the robot and the room.

(b) A person enters the room, and
when detected by the Person agent,
inserted in the DSR.

Fig. 2. Illustration of various worldModel State. The symbol robot has been con-
strained to one symbol for explanatory reasons.

to store objects and their relations, and combined with a grammar to control
its evolution, gives us a coherent growing model. Figure 2 shows how the graph
changes when a person enters the scene. In the left side only the robot and the
rooms are represented. In the right side, a person enters the room and the graph
incorporates her as sub graph correctly related to the existing structure and with
symbolic attributes denoting what is known about her.

A third reason to use a graph structure is the possibility of translating it into a
PDDL instance. Depending on what is stored in the graph and the PDDL version
this procedure has certain restrictions but it allows a direct use of start of the art
planning algorithms that otherwise would have required an important additional
effort. Further details on how this translation is done can be found in [14].

A fourth reason to support the choice of graphs is the facility to visualize
its contents. Graph’s contents can be displayed in multiple ways using available
3D technology and that is a crucial feature to debug the code of the agents,
specially when interacting among them. In CORTEX, visualization of DSR is
done using the open source 3D scene-graph OpenSceneGraph, OSG [1] and a
class implementing the observer pattern that keeps DSR and OSG synchronized.
The DSR graph can be drawn in different ways. The geometric nodes and edges
are drawn as a normal 3D scene, using the meshes and 3D primitives that can
be stored as attributes in DSR. The symbolic relations can be drawn as an
independent graph or as a superimposed structure on its geometric counterpart.

3.2 DSR Formalization

DSR is a multi-label directed graph which holds symbolic information as logic
attributes related by predicates. These are stored in nodes and edges respectively.
Also, DSR holds geometric information as predefined object types linked by 4 × 4
homogeneous matrices. Again, these are stored in nodes and edges respectively.
With DSR, the hand of the robot can be at a 3D pose and, at the same time,
it can be close to the door knob, being this a predicate computed by measuring
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the distance between the hand and the knob, in the graph representation. Note
that this distance could also had been measured with more precision by direct
observation of both the knob and the hand once they are inside the frustum
of the robot’s camera but, at the end, that information would be stored in the
graph and propagated to the other agents.

As a hybrid representation that stores information at both metric and sym-
bolic level. The nodes store concepts that can be symbolic, geometric or a mix
of them. Metric concepts describe numeric quantities of objects in the world
that can be structures like a three-dimensional mesh, scalars like the mass of a
link, or lists like revision dates. Edges represent relationships among symbols.
Two symbols may have several kinds of relationships but only one of them can
be geometric. The geometric relationship is expressed with a fixed label called
“RT”. This label stores the transformation matrix between them. A formal def-
inition of DSR can be given as a multi-label directed graph G = (N,E) where
N represents the set of nodes {n1, ...nk} and E the set of edges {e1....er}.

G = (V,E) where E ⊆ N × N,uv �= vu(without loops vv) (1)

According to its symbolic nature, edges properties are:

1. For each pair e = uv the inverse does not exist e = uv �= e−1 = vu
2. For each pair e = uv, e can store multiple values
3. The set of e is defined as L = {e1, ...er, (l1, l2, ...ls)} where li �= lj

According to its geometric nature and the properties of the transformation
matrix RT , the characteristics of geometric edges are:

1. For each pair e = uv = RT, e is unique
2. For each pair e = uv = RT, define the inverse of e as e−1 = vu = RT−1

Therefore the kinematic chain C(u, v) is defined as the path between the
nodes u, v and an equivalent transformation RT∗can be computed by multiplying
the equivalent transformations corresponding to the sub paths from each node
to their closest common ancestor. Note that sub path from the common ancestor
to v will be obtained multiplying the inverse transformations.

This geometrical relations are showed in Fig. 3.

4 CORTEX Internal Organization

The functioning of the architecture as a set of agents interacting through the
DSR can be easily explained if we picture it as a large dynamical system. Starting
in a quasi-stationary state, the perceptual modules try to keep the internal rep-
resentation synchronized with the world, updating parts of it as things change.
But when a new mission is requested, a plan is generated and injected into the
symbolic graph. This alteration creates a disequilibrium to which the whole sys-
tem reacts trying to restore the initial balance. In the process of going back
to normality the system extends its internal model, capturing more details of
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A B C

D

RT
at

RTAC = RTAB × RTBC

RT

in

Fig. 3. Unified representation as a multi-labeled directed graph. Edges are labeled
“at” and “in” denoting logic predicates between nodes. Also, edges between A,B and
B,C have a geometric type of label, “RT” that codes a rigid transformation between
them. Geometric transformations can be chained or inverted to compute changes in
coordinate systems.

the external world. The new knowledge is used in the next perturbation. Fur-
thermore, the idea of opportunistic control by which agents can write in the
blackboard is driven not only as a result of solving a local goal but triggered
by internal events. A typical situation for a visual perceptive agent would be
to configure, search and track types of objects specified in the current plan, but
these agents are also in charge of other secondary unconscious tasks like obstacle
detection for navigation or simply, novelty detection if in a well known environ-
ment. In this cases the agent would inject the percepts into the shared graph so
the information can be used somewhere else.

To complete the picture of how CORTEX is organized, Fig. 4 shows a very
schematic sketch of the main agents and their connection through the DSR.

– The central part of the figure represents the DSR. It is enclosing all the
Executive, a module in charge of managing the inclusion of new changes on
the DSR or publishing the new DSR to the agents.

– In the figure, the squared boxes that surround the inner representation repre-
sent networks of software components -agents. They encode complete robotics
functionalities -e.g. navigation, conversation, planning, etc- and share infor-
mation about the state through the representation. The current picture shows
the instantiation of CORTEX within Gualzru.

– Finally, the boxes on the top part of the figure enclose action modules (e.g.,
for moving the robot or speech a phrase). The boxes on the down part enclose
perception modules (e.g. for capturing a laser scan or the battery level). The
WinKinectComp module is a specific component that provides information
taken from the Kinect sensor from Microsoft (skeletons, joins, faces...) and
speech transcriptions. All these modules encode the Hardware Abstraction
Layer (HAL).

A
u

th
o

r 
P

ro
o

f



Deep Representations for Collaborative Robotics 11

Fig. 4. Overview of the shared world model and its location within the cognitive
architecture. The picture shows the proposed framework within the Gualzru scenario
described at Sect. 5 (see text for details).

5 Experimental Results

As an initial validation of CORTEX and DSR in a real robot interacting with
humans we tested the ideas on Gualzru [30]. Gualzru is a salesman robot that
works autonomously in crowded scenarios and has to step out when a potential
client passes by. Gualzru will approach the customer and start a conversation
trying to convince her to go to an interactive sales panel. If the robot succeeds,
it will walk the person to the panel and then will start a new search.

In previous versions of the robot, we found that some synchronization prob-
lems were caused by having a fragmented internal representation. The robot used
two separate graphs, one for the kinematic state and one for symbolic attributes
and predicates. There several architectures that keep these representations sep-
arated [6] and it is a reasonable choice since both hold different contents and
require different types of processes. However, in complex interaction scenarios,
an integrated representations simplifies synchronization making all data avail-
able to all agents at the same time. The introduction of DSR in Gualzru solved
those problems and agent communications worked flawlessly.

Other important drawback was related to its limited conversational abilities.
These limitations greatly affects its performance. Speech recognition is hard
to solve in noisy, crowded scenarios in which even people find difficulties in
understanding each other (see Fig. 5). It is also difficult to understand what the
robot is saying. To improve the ability of the robot to communicate within this
scenario, we have added a tactile screen on the robot. This screen displays what
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Fig. 5. The Gualzru robot interacting with people at the University of Malaga.

Fig. 6. Shelly is closing one mission.

the robot is saying. It allows the person to answer to the robot by touching
the desired response on the screen. All this information is shared among agents
using the symbolic annotations added to DSR. It is important to note that
these concepts can be updated by the agents at interaction rates. The ADAPTA
project started on 2012, and different representations were evaluated. The last
trials on September 2015 allowed to deeply test that the new representation is
able to engine the whole architecture at human interaction rates.
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The CORTEX architecture was also endowed within Shelly, an autonomous
mobile robot that, contrary to the Gualzru robot, has two arms, with 7 DoFs
and a final end-effector. The initial aim is to locate and grasp objects. Figure 6
shows how Shelly is bringing one cup to the user. All the robot’s activity (room
and table perception, speech recognition and command identification, cup local-
isation and grasping, etc.) is performed without human supervision. The total
number of software components is now greater than 20, all of them organised on
agents that are connected to the DSR. This remains as the only way for inter-
changing information among agents. The robot is able to correctly analyse the
context and solves the commanded missions.

6 Conclusions and Future Work

This paper has presented our proposal for internalizing a deep state representa-
tion of the outer world. After testing the previous approaches in very demanding
scenarios, the unified representation arises as our final approach for endowing
the full kinematic tree with symbolic information; and providing the geometric
information to the high-level planner. The unified representation is currently
interfaced by a set of task-related networks of agents, which will provide broad
functionalities such as navigation, dialog or multi-modal person monitoring. The
current implementation guarantees that the agents are able to feed the unified
representation with new geometric models or symbolic concepts, and that the
data stored in the representation is kept synchronized with the real world by
updating actions performed by different agents.

Future work will focus on exploiting the hierarchical structure encoded within
the DSR. This will allow the agents to subscribe to specific parts of the repre-
sentation (e.g. the person or the robot arm). It is also needed to evaluate the
computational times associated to the management of our graphs. Although it
is clear that the number of nodes/arcs is relatively small, it must be noted that
this graph is currently shared with all the agents on the architecture.
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